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RESUMO 
 
A dissertação investiga sinistros de trânsito ocorridos em Rio Verde (GO) entre 2021 e 

2024, a partir de 7.926 boletins eletrônicos convertidos em bases adequadas para análise 

temporal, espacial e preditiva. A caracterização estatística indica estabilidade anual, pico 

vespertino em dias úteis, predominância de colisões bilaterais com automóveis e maior 

envolvimento de homens de 18 a 35 anos. Métodos de densidade kernel, Moran I/LISA 

e DBSCAN localizam focos persistentes na Avenida Presidente Vargas e nos eixos BR-

452/GO-174, com autocorrelação espacial positiva que sugere trechos prioritários para 

intervenção. Modelos Random Forest, LightGBM e regressão logística, avaliados por 

validação cruzada estratificada e controle de vazamento temporal, alcançam acurácia 

entre 0,68 e 0,97 e mostram que variáveis geográficas, sazonais e de infraestrutura 

superam marcadores exclusivamente temporais na previsão de gravidade e características 

associadas ao sinistro. Conclui-se que a integração de estatística espacial e aprendizado 

de máquina tem potencial para orientar ações de engenharia, fiscalização e educação 

voltadas à redução de risco em corredores críticos. 

 

Palavras-chave: sinistros de trânsito; análise espacial; aprendizado de máquina; Rio 

Verde; segurança viária. 

 
ABSTRACT 
 

The dissertation investigates the traffic crashes that occurred in Rio Verde (GO), Brazil, 

between 2021 and 2024, based on 7,926 electronic reports converted into datasets suitable 

for temporal, spatial, and predictive analysis. The statistical characterization indicates 

annual stability, afternoon peaks on weekdays, a predominance of bilateral collisions 

involving automobiles, and a higher incidence among men aged 18 to 35. Kernel density 

estimation, Moran’s I/LISA, and DBSCAN methods identify persistent hotspots along 

Presidente Vargas Avenue and the BR-452/GO-174 corridors, with positive spatial 

autocorrelation suggesting priority areas for its intervention. Random Forest, LightGBM, 

and logistic regression models, evaluated through stratified cross-validation and temporal 

leakage control, achieved accuracies ranging from 0.68 to 0.97. Results show that 

geographic, seasonal, and infrastructure-related variables outperform purely temporal 

markers in predicting crash severity and associated characteristics. The study concludes 



 

 
 

that integrating spatial statistics and machine learning supports engineering, enforcement, 

and educational strategies aimed at reducing risk in critical corridors. 

 
Keywords: traffic crashes; spatial analysis; machine learning; Rio Verde; road safety. 
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1. INTRODUÇÃO 

1.1.  Justificativa 

A segurança viária configura-se como um desafio global: estima-se que 1,19 

milhão de pessoas morram anualmente em sinistros de trânsito, com maior concentração 

em países de renda média e baixa. Esse quadro motivou a Organização das Nações Unidas 

a instituir a Década de Ação pela Segurança no Trânsito 2021-2030, cuja meta principal 

é reduzir em 50% as mortes e lesões no período considerado (ONU, 2020). 

 No Brasil, os sinistros permanecem entre as principais causas externas de 

mortalidade; em 2019 foram registradas 32.654 mortes, produzindo impactos 

significativos sobre os sistemas de saúde e produtividade econômica (OMS, 2019). Em 

escala estadual, dados do Departamento de Informática do SUS indicam crescimento de 

6,08% nas mortes por sinistros em Goiás, entre 2020 e 2021, passando de 1.578 para 

1.674 óbitos (Brasil, 2023). Esse incremento reafirma a necessidade de políticas 

focalizadas que considerem especificidades regionais e municipais. Para o período 2021-

2024, o Relatório Estatístico de Sinistros de Trânsito (RENAEST/SENATRAN) informa 

15.824 registros em Rio Verde, envolvendo 22.523 veículos, resultando em 102 óbitos, 

correspondendo a 43,02 mortes por 100.000 habitantes (SENATRAN, 2024). Esses 

indicadores refletem a combinação de tráfego agroindustrial intenso, expansão urbana 

acelerada e hierarquia viária centralizada em poucos corredores, ampliando a exposição 

ao risco. 

A literatura aponta que jovens do sexo masculino, usuários de motocicletas e 

condutores em fins de semana, à noite, formam o perfil mais frequente de vítimas (OMS, 

2021). Ao mesmo tempo, fatores estruturais, como condição do pavimento, sinalização e 

geometria das vias, interagem de modo complexo com aspectos comportamentais, 

exigindo abordagem multifatorial para compreensão e mitigação do problema. Nesse 

cenário, a presente dissertação parte de diagnóstico de âmbito global e nacional, 

justificando uma investigação que considera também o nível estadual e, sobretudo, a 

realidade municipal de Rio Verde - GO, em que os impactos sociais e econômicos dos 

sinistros demandam respostas baseadas em evidências. 
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Apesar da urgência do problema, a produção científica dedicada aos sinistros de 

trânsito apresenta lacunas metodológicas importantes. Estudos que recorrem 

exclusivamente a modelos estatísticos clássicos conduzem, na maioria das vezes, a 

diagnósticos desagregados: analisam separadamente variáveis de infraestrutura, veículo 

ou condutor, sem capturar as inter-relações que atuam simultaneamente na ocorrência dos 

sinistros (CHANG; CHEN, 2005; LORD; MANNERING, 2010). Mesmo quando 

empregam modelos preditivos, tais pesquisas muitas vezes excedem os limites de 

validade externa, pois desconsideram a possibilidade de data leakage, isto é, a inclusão 

inadvertida de informações indisponíveis no momento da decisão, o que inflaciona 

artificialmente as métricas de desempenho (KAUFMAN et al., 2012; KAPOOR; 

NARAYANAN, 2023). Essa prática pode comprometer a generalização dos resultados e, 

portanto, a utilidade em cenários reais de gestão da segurança viária. 

Adicionalmente, a literatura brasileira concentra grande parte de seus esforços em 

capitais ou regiões metropolitanas, enquanto municípios de porte médio, como Rio Verde, 

permanecem sub-representados.  

Essas lacunas justificam a adoção de uma abordagem integrada, que combina 

análise exploratória, estatística espacial e machine learning com controle de vazamento 

de dados (data leakage). Tal combinação visa superar a fragmentação metodológica, 

oferecer diagnósticos espacialmente explícitos e produzir modelos preditivos realmente 

aplicáveis à realidade de Rio Verde – GO: município cuja hierarquia viária singular e 

dinâmica agroindustrial demandam soluções baseadas em evidência local. 

Essas evidências dialogam diretamente com as metas do Plano Nacional de 

Redução de Mortes e Lesões no Trânsito (PNATRANS) e com o Plano Global da Década 

de Ação pela Segurança no Trânsito 2021-2030, ambos voltados a reduzir em pelo menos 

50% as fatalidades até 2030 (BRASIL, 2023; ONU, 2020). 

Este estudo contribui para a agenda ambiental, social e de governança (ESG) e 

para os Objetivos de Desenvolvimento Sustentável ao subsidiar informações que apoiem 

à proposição de intervenções que preservam vidas, reduzem custos hospitalares e 

otimizam a infraestrutura urbana, alinhando-se ao pilar social da ESG e ao ODS 3, que 

visa assegurar uma vida saudável e promover o bem-estar para todos (ONU, 2015). Ao 

incorporar técnicas de análise de dados e inovação tecnológica, também se alinha às metas 

do ODS 9, ao fomentar soluções baseadas em evidências voltadas à resiliência e 

sustentabilidade dos sistemas de transporte.  
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Essas contribuições reforçam o valor estratégico de estudos locais bem 

fundamentados: eles transformam dados rotineiros em inteligência territorial, conectam-

se às diretrizes globais de desenvolvimento sustentável e oferecem rotas viáveis para que 

municípios de porte semelhante a Rio Verde adotem políticas de segurança viária 

baseadas em evidências. 

A presente investigação considera exclusivamente registros de sinistros de trânsito 

sem vítimas, ocorridos na área urbana de Rio Verde (GO) entre 1.º de janeiro de 2021 e 

31 de dezembro de 2024, conforme dados disponibilizados pela Agência Municipal de 

Mobilidade e Trânsito. A opção por esse recorte está relacionada aos registros acessíveis, 

sendo desejável, em estudos futuros, ampliar o recorte temporal e incluir sinistros com 

vítimas. 

Em relação à metodologia, embora viabilize análises consistentes, apresenta 

vieses de registro que merecem consideração. Um dos mais recorrentes é a 

subnotificação, que ocorre quando apenas uma parcela dos eventos é formalmente 

reportada. Pesquisa como a de Alsop & Langley (2001) indica que sinistros mais graves, 

especialmente os que resultam em fatalidades, têm maior probabilidade de serem 

registrados, enquanto sinistros leves, que envolvem apenas danos materiais ou ferimentos 

menores, frequentemente não entram nas estatísticas oficiais. 

Esse viés afeta a capacidade de avaliar corretamente os riscos e os fatores 

contribuintes para a acidentalidade, comprometendo o planejamento de estratégias 

preventivas. Além da subnotificação, a inconsistência e a incompletude dos registros são 

problemas recorrentes na coleta de dados de trânsito. Informações essenciais, como a 

severidade das lesões, as condições ambientais no momento do sinistro e o 

comportamento dos condutores, nem sempre são devidamente registrados. Em parte, pela 

falta de padronização nos procedimentos de coleta e uso de formulários inadequados, 

comprometendo a integração desses registros com outras bases de dados, como sistemas 

hospitalares e estatísticas de tráfego (Hauer & Hakkert, 1988). 

Estudos nacionais e internacionais têm empregado bases de dados de acidentes de 

trânsito, inclusive aquelas compostas predominantemente por registros de sinistros sem 

vítimas, para compreender a distribuição espacial e temporal dos eventos e subsidiar 

políticas de segurança viária. No contexto brasileiro, Queiroz (2003) desenvolveu uma 

análise espacial dos acidentes em Fortaleza, utilizando dados georreferenciados para 

identificar locais críticos e padrões de concentração, ressaltando a relevância dessas 

informações mesmo em cenários com incompletude de registros. Em Santa Catarina, 
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Silva et al. (2020) investigaram a distribuição dos acidentes em rodovias estaduais a partir 

de dados administrativos, evidenciando que a análise espacial permite priorizar 

intervenções mesmo quando a base carece de detalhes sobre a gravidade. 

No cenário internacional, trabalhos como o de Amoros, Martin e Laumon (2006) 

examinaram o viés de registro em bases oficiais, mostrando que sinistros sem vítimas 

fatais representam parcela significativa e fornecem informações úteis para identificar 

fatores de risco e áreas críticas. Hauer e Hakkert (1988) discutiram a importância da 

padronização na coleta de dados para assegurar comparabilidade entre estudos, enquanto 

Alsop e Langley (2001) demonstraram que a análise desses registros contribui para 

compreender padrões de comportamento no tráfego urbano. 

Estudos recentes também reforçam a aplicabilidade de bases com registros não 

fatais. Moghadas et al. (2024) aplicaram modelos espaciais bayesianos para avaliar a 

influência de características viárias e socioeconômicas sobre a ocorrência de sinistros sem 

vítimas no Irã, evidenciando correlação com variáveis ambientais. Em Portugal, Pinho et 

al. (2023) utilizaram dados policiais de acidentes leves para desenvolver mapas de risco 

e prever áreas de maior probabilidade de ocorrência. Em países de alta renda, como 

Canadá e Nova Zelândia, pesquisas conduzidas por Levine et al. (1995) e Keall & 

Newstead (2020) mostraram que a inclusão de registros não fatais em análises espaciais 

aumenta a robustez estatística e a capacidade preditiva dos modelos. 

No Brasil, estudos aplicados ao contexto urbano, como o de Lages et al. (2017), 

enfatizam que, embora haja subnotificação, bases contendo sinistros sem vítimas são 

insumos valiosos para diagnosticar problemas de engenharia de tráfego e planejar 

intervenções. De modo semelhante, trabalhos apresentados em congressos técnicos, como 

o de Camboriú (2019), destacam a utilidade de tais registros para análises de curto prazo 

e avaliação de medidas corretivas. 

A literatura demonstra que, apesar das limitações inerentes, bases compostas por 

sinistros sem vítimas têm aplicação consolidada em pesquisas acadêmicas e em 

diagnósticos de segurança viária, oferecendo insumos estratégicos para identificação de 

hotspots, análise de fatores contribuintes e priorização de ações preventivas. No contexto 

deste estudo, hotspot refere-se a locais com alta concentração de sinistros de trânsito em 

determinado período, cuja identificação permite direcionar ações de engenharia, 

fiscalização e educação. Entre as metodologias consolidadas para a detecção, destacam-

se a análise de densidade kernel (KDE), amplamente utilizada para estimar a intensidade 

espacial de ocorrências; o método empírico de Bayes, aplicado para ajustar estimativas 
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considerando variações aleatórias; e indicadores de risco derivados de taxas padronizadas 

por volume de tráfego ou população exposta (Anderson, 2009; Elvik, 2008). A 

metodologia proposta neste trabalho combina técnicas de estatística espacial com 

modelos de aprendizado de máquina, permitindo não apenas identificar áreas de maior 

concentração de sinistros sem vítimas, mas também explorar padrões temporais e 

variáveis associadas. Essa integração contribui para a análise e fornece subsídios mais 

precisos para o planejamento de intervenções preventivas no contexto urbano. 

Para situar o recorte metodológico adotado neste estudo, no contexto mais amplo 

da acidentalidade no país, realizou-se uma análise comparativa com dados nacionais de 

sinistros com vítimas, considerando o período de 2021 a 2024 e indicadores consolidados 

pelo RENAEST/SENATRAN. 

Os dados nacionais de sinistros com vítimas entre 2021 e 2024 apontam leve 

variação no volume total de ocorrências e nos indicadores de gravidade. Nesse período, 

o número de óbitos variou entre 23.745 (2021) e 21.525 (2024), enquanto a taxa de óbitos 

por 100 mil habitantes oscilou de 11,40 a 10,04. O percentual de óbitos por sinistro 

manteve-se entre 2,35% e 1,89%, refletindo mudanças nos padrões de severidade e na 

distribuição das ocorrências registradas. 

Apesar da redução nas mortes, o volume total de sinistros manteve-se elevado, 

com picos em 2023 (1.165.899 registros) e pequena queda em 2024 (1.140.114). O 

número de feridos e ilesos permaneceu elevado, variando de 1,41 a 1,58 milhão por ano, 

reforçando a necessidade de ações preventivas contínuas. 

Quando comparados com os sinistros sem vítimas, que constituem o foco deste 

estudo, esses dados permitem situar o recorte adotado em um contexto mais amplo, 

evidenciando que, embora as ocorrências fatais estejam em queda, a frequência de 

eventos menos graves permanece significativa e potencialmente indicativa de pontos 

críticos no espaço urbano. A análise comparativa, portanto, auxilia na compreensão da 

importância estratégica de monitorar e intervir também sobre esses registros, prevenindo 

a escalada para eventos de maior severidade. 

 

1.2. Metodologia 

A metodologia desta pesquisa foi concebida para garantir que cada etapa, da coleta 

ao teste de modelos preditivos, responda de forma coerente às lacunas identificadas na 
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justificativa e alinhe-se aos três artigos que compõem a dissertação. O desenho adotado 

percorre um pipeline de pré-processamento estruturado e desdobra-se em abordagens 

estatística, espacial e de machine learning. Embora os conjuntos finais de dados utilizados 

apresentem pequenas variações de tamanho e abrangência temporal, especialmente no 

Capítulo III em relação aos Capítulos I e II, todos derivam de uma mesma fonte 

institucional, com critérios padronizados de tratamento e validação, assegurando que os 

resultados produzidos sejam metodologicamente compatíveis, com alto potencial de 

replicação e utilidade prática para gestores públicos e pesquisadores interessados em 

segurança viária baseada em evidências. 

Na Figura 1 são apresentadas, em formato de fluxograma, as etapas metodológicas 

adotadas. 

 
Figura 1- Método adotado na pesquisa. 

 
 

Fonte de dados e contexto da pesquisa 

O estudo fundamenta-se na base eletrônica de sinistros de trânsito mantida pela 

Agência Municipal de Mobilidade e Trânsito de Rio Verde (AMT), composta por boletins 

digitais, preenchidos por agentes de campo e armazenados em sistema próprio da 
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autarquia. Esses dados foram extraídos para planilha eletrônica e constituem a fonte 

primária de dados para os três capítulos da dissertação, com recortes temporais distintos, 

conforme a finalização de cada etapa analítica. 

Nos Capítulos I e II, que tratam respectivamente da análise estatística descritiva e 

da análise espacial e espaciotemporal, foi utilizada a versão mais atualizada da base, 

compreendendo o período de 1.º de janeiro de 2021 a 31 de dezembro de 2024. Para o 

Capítulo III, dedicado à modelagem preditiva por meio de técnicas de machine learning, 

foi empregada a mesma base institucional, porém com recorte temporal entre 1.º de 

janeiro de 2021 e 31 de dezembro de 2023. Essa delimitação ocorreu porque na época da 

conclusão do terceiro artigo, a versão atualizada até 2024 ainda não estava disponível, 

impossibilitando a replicação imediata das análises com o conjunto mais amplo. 

Ressalta-se, contudo, que os procedimentos metodológicos adotados no Capítulo 

III são plenamente reprodutíveis, o que viabiliza, em estudos futuros, a atualização das 

análises preditivas com a base unificada dos demais capítulos, ampliando a 

comparabilidade longitudinal dos resultados e fortalecendo a robustez dos modelos 

desenvolvidos. 

Capítulo I 

O primeiro artigo da dissertação tem como objetivo caracterizar, sob uma 

perspectiva descritiva, os sinistros de trânsito registrados em Rio Verde (GO) entre 2021 

e 2024. A abordagem metodológica concentra-se na avaliação da completude da base, na 

estruturação do conjunto de variáveis temporais e na identificação de padrões gerais de 

ocorrência. Foram aplicadas estatísticas descritivas univariadas e bivariadas, análise de 

frequências relativas e absolutas, médias móveis, histogramas e matrizes de correlação. 

Também foram utilizados testes de independência para variáveis categóricas. 

Capítulo II 

O segundo artigo aprofunda a análise dos sinistros a partir de uma abordagem 

espacial e espaciotemporal. Foram aplicadas técnicas de geoprocessamento para mapear 

a concentração de ocorrências no território urbano de Rio Verde. Inicialmente, utilizou-

se a Estimativa de Densidade por Kernel (KDE) para gerar superfícies contínuas de 

concentração de eventos, com grid fixo de 500 metros. Em seguida, aplicou-se o Índice 

de Moran Global para mensurar a autocorrelação espacial e os Indicadores Locais de 

Associação Espacial (LISA) para classificar áreas segundo a significância estatística e 

tipo de cluster (alto-alto, baixo-baixo etc.). Para análise em escala de segmento viário, 

com foco na Avenida Presidente Vargas, empregou-se o algoritmo DBSCAN, que 
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permite identificar agrupamentos densos ao longo de eixos lineares. O conjunto dessas 

técnicas viabiliza a identificação de zonas críticas e padrões de dispersão espacial dos 

sinistros. 

Capítulo III 

O terceiro artigo concentra-se na avaliação da viabilidade de modelos preditivos 

para variáveis relacionadas a sinistros, com ênfase no controle rigoroso de data leakage. 

Foram definidas onze variáveis-alvo, tanto categóricas quanto contínuas, modeladas por 

meio de algoritmos supervisionados e não supervisionados. Entre os algoritmos 

empregados destacam-se Random Forest, Extra Trees, XGBoost, LightGBM e Regressão 

Logística. O conjunto de preditores foi previamente tratado com técnicas de codificação, 

normalização e eliminação de atributos comprometidos por vazamento de dados. 

Todas as etapas da pesquisa foram conduzidas em ambiente computacional 

controlado, com o objetivo de garantir rastreabilidade, transparência e possibilidade de 

reprodução integral dos resultados. O processamento e análise dos dados foram realizados 

em linguagem Python, utilizando bibliotecas para ciência de dados, tais como pandas, 

numpy, matplotlib, seaborn, scikit-learn, xgboost, lightgbm, statsmodels, geopandas, 

esda e PySAL. A criação de mapas foi conduzida com base em arquivos vetoriais 

(shapefiles) e camadas raster georreferenciadas. 

Cabe destacar que esta pesquisa foi conduzida com observância aos princípios 

éticos da pesquisa científica, sendo utilizados única e exclusivamente para fins 

acadêmicos e de interesse público, respeitando os princípios da finalidade, necessidade e 

minimização previstos na LGPD. A utilização da base foi autorizada formalmente pela 

AMT, mediante solicitação institucional, e o estudo foi dispensado de submissão ao 

Comitê de Ética em Pesquisa por se tratar de análise de dados secundários públicos, sem 

qualquer tipo de intervenção direta com seres humanos. 

 

1.3.  Fundamentação teórica 

1.3.1. Estatística descritiva e inferencial aplicada a sinistros 

A avaliação de sinistros de trânsito inicia-se por estatísticas descritivas que 

quantificam frequência e gravidade. Contagens absolutas de ocorrências, feridos e óbitos 
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permitem caracterizar a magnitude do problema, ao passo que taxas por 100.000 

habitantes ou por bilhão de veículos-quilômetro padronizam a exposição e viabilizam 

comparações interjurisdicionais (WASHINGTON; KARLAFTIS; MANNERING, 

2020). Índices de gravidade como razão mortos-feridos complementam a análise, 

sintetizando a energia dissipada nos eventos e a carga sobre o sistema de saúde (ELVIK 

et al., 2009). 

Para variáveis categóricas, tabelas de contingência e testes de qui-quadrado 

avaliam independência entre natureza do sinistro, tipo de usuário da via e nível de lesão. 

Quando frequências esperadas são baixas, aplica-se o teste exato de Fisher, assegurando 

validade das inferências (MONTGOMERY; RUNGER, 2018). Em variáveis contínuas, 

por exemplo, idade das vítimas ou distância do centro urbano—normalidade é rara; logo, 

medidas de posição (mediana) e dispersão (intervalo interquartil) substituem média e 

desvio-padrão, e comparações utilizam testes não paramétricos de Mann-Whitney ou 

Kruskal-Wallis. 

A modelagem inferencial dos números de sinistros exige regressão para 

contagens. O modelo de Poisson, fundamentado na suposição de média igual à variância, 

raramente atende aos dados empíricos, que exibem sobredispersão decorrente de 

heterogeneidade não observada entre segmentos viários. A regressão binomial negativa 

introduz parâmetro de dispersão para corrigir essa violação, melhorando a estimativa dos 

erros-padrão (CAMERON; TRIVEDI, 2013). Quando predominam zeros estruturais—

vias sem registros no período—utilizam-se modelos inflados a zero ou mistos de Poisson-

lognormal (HILBE, 2011). 

A severidade do desfecho (ileso, ferido, morto) é variável politômica de ordem 

natural. A regressão logística ordinal, baseada na função logística cumulativa, estima a 

probabilidade acumulada de pertencer a categorias mais graves, controlando por idade, 

sexo, tipo de veículo e velocidade regulamentada do trecho. Caso o pressuposto de 

proporcionalidade dos odds seja violado, recorre-se ao modelo logístico multinomial 

(LORD; MANNERING, 2010). 

Para inferências confiáveis, diagnostica-se multicolinearidade pelos fatores de 

inflação da variância, investiga-se influência de observações com a distância de Cook e 

testa-se a qualidade de ajuste por deviance residual e critério AIC. A incerteza final das 

estimativas é expressa em intervalos de confiança de 95% obtidos por reamostragem 

bootstrap, técnica robusta a distribuições desconhecidas (HAUER, 2001). 
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1.3.2. Análise temporal e espaciotemporal 

A análise temporal de sinistros de trânsito fundamenta-se na construção de séries 

de contagem e em representações bidimensionais que combinam unidades temporais 

(hora, dia, mês, ano) para revelar padrões de variação sazonal, ciclos semanais e 

tendências de longo prazo. A suavização por médias móveis permite reduzir a 

variabilidade estocástica inerente a dados de baixa frequência e destacar oscilações 

estruturais relevantes (O’SULLIVAN; UNWIN, 2003). 

A dimensão espacial é incorporada por estimativas de densidade kernel (KDE), 

técnica de alisamento que produz superfícies contínuas de intensidade a partir de 

coordenadas pontuais, possibilitando a identificação de áreas com maior concentração de 

eventos sem pressupor distribuição paramétrica prévia (SILVERMAN, 1986). A 

segmentação da base em recortes temporais gera sucessivas superfícies comparáveis, 

fornecendo indícios de persistência ou deslocamento de hotspots ao longo do tempo (XIE; 

YAN, 2013). 

Para avaliar dependência espacial global, emprega-se o índice de autocorrelação 

de Moran, cujo resultado positivo indica agrupamento de altas ou baixas frequências, 

enquanto valores negativos sugerem dispersão. A decomposição local por Indicadores 

Locais de Associação Espacial (LISA) delimita unidades “high-high” ou “low-low” e 

permite monitorar a evolução espaciotemporal (ANSELIN, 1995; GETIS, 2007). 

A clusterização baseada em densidade, executada com o algoritmo DBSCAN, 

identifica conglomerados de ocorrências contíguas em redes viárias e distingue ruído de 

padrões estruturados, sem impor número pré-definido de grupos. O método é adequado a 

distribuições lineares típicas de eixos rodoviários e mantém robustez frente a variação de 

forma e tamanho dos agrupamentos (ESTER et al., 1996; CHAINEY; RATCLIFFE, 

2013). 

O emprego conjunto de séries temporais, KDE, autocorrelação espacial e 

clusterização densidade-baseada fornece arcabouço coerente para examinar 

simultaneamente quando e onde os sinistros ocorrem, subsidiando a priorização de 

intervenções em segurança viária, conforme dinâmica espaço-temporal demonstrada na 

literatura especializada. 
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1.3.3. Inteligência artificial 

A Inteligência Artificial (IA) representa importante área na ciência da 

computação, em que fornece vasta gama de ferramentas para solucionar diversas formas 

de problema. Segundo Russell e Norvig (2013), no campo das ciências e engenharias, 

está presente e em escala crescente. 

A definição do conceito de Inteligência Artificial, no entanto, apresenta desafios 

pela complexidade em determinar o significado do termo "inteligência".  

A etimologia da palavra "inteligência" remonta ao latim inter e legere, 

significando "entre" e "escolher", respectivamente. Essa raiz etimológica leva à conclusão 

de que a inteligência é a capacidade de escolher entre alternativas. Por sua vez, "artificial" 

provém do latim artificiale, indicando algo não natural, criado ou construído pelos seres 

humanos. Russell e Norvig (2013) fornecem perspectiva ampla da IA descrevendo-a 

como um recurso capaz de automatizar e sistematizar tarefas complexas, destacando o 

valor em diversas esferas do conhecimento humano.  

Ainda segundo Russell e Norvig (2013) quatro abordagens principais são 

delimitadas em IA. A primeira abordagem busca criar um "sistema que pensa como ser 

humano", envolvendo atividades como tomada de decisões, resolução de problemas e 

aprendizado. A segunda abordagem visa desenvolver um "sistema que atua como ser 

humano", criando máquinas para realizar funções que demandam inteligência humana. A 

terceira abordagem concentra-se em um "sistema que pensa racionalmente", utilizando 

modelos computacionais para estudar faculdades mentais. Por fim, a quarta abordagem 

trabalha na criação de um "sistema que atua racionalmente", focando no projeto de 

agentes inteligentes. 

No âmbito da evolução da IA, ela desenvolveu-se em duas vertentes principais: 

abordagens centradas nos seres humanos e abordagens centradas na racionalidade. A 

primeira é uma ciência empírica que envolve hipóteses e confirmação experimental, 

enquanto a segunda emprega conceitos matemáticos em sua construção (Gomes, 2010). 

O campo da IA evoluiu com a introdução de sistemas inteligentes, marcados por 

arquiteturas que incluíam base de conhecimentos, motor de inferência, módulo de 

explicação, módulo de aquisição de conhecimentos e interface com o usuário. As 

gerações seguintes contemplaram o aprendizado simbólico, influenciado por linguagens 

de programação como Prolog, Fortran, Cobol e Lisp. Métodos de aprendizado simbólico, 



 
 

 
 

18 

como Analogia, Instâncias, Evolução, Seleção, Reforço não Supervisionado, Bayesiano, 

Explicações e Indução, foram fundamentais na evolução da IA (Mitchell, 1997). 

 

1.3.4. Machine Learning 

O termo "Machine Learning", ou em português, "Aprendizado de Máquina", foi 

formalizado pelo engenheiro do MIT Arthur Samuel em 1959, sendo definido como uma 

disciplina que concede aos computadores a capacidade de adquirir conhecimento 

automaticamente por meio da experiência (Mitchell, 1997; Izbicki e dos Santos, 2020). 

Inserido no espectro da Inteligência Artificial (IA), é um campo de estudo que se baseia 

em algoritmos capazes de identificar padrões em conjuntos de dados, possibilitando a 

previsão de eventos futuros (Mitchell, 1997). O aprendizado ocorre sempre que há 

modificação na estrutura do programa ou na base de dados, sendo impulsionado por novos 

dados de entrada, resultando no aperfeiçoamento contínuo do desempenho. O avanço da 

capacidade de processamento e a disponibilidade de dados permitiram o desenvolvimento 

de modelos analíticos baseados no aprendizado de máquina. 

Assim, o contexto contemporâneo é caracterizado pela crescente disponibilidade 

de dados em diferentes formatos, desencadeando um desafio na análise desses vastos 

conjuntos de informações. O foco central reside na extração de conhecimentos úteis para 

aprimorar processos decisórios (Izbicki e dos Santos, 2020). 

O processo de Machine Learning oferece várias abordagens, sendo crucial 

entender o problema para escolher a metodologia apropriada. Segundo Mitchell (1997), 

destacam-se três métodos principais: Aprendizado Supervisionado, Aprendizado Não 

Supervisionado e Aprendizado por Reforço.  

No Aprendizado Supervisionado, treina-se manualmente uma rede neural com 

conjuntos de dados contendo entradas com vistas a reconhecer e internalizar os padrões 

que levam a uma determinada saída. O Aprendizado Não Supervisionado lida com dados 

abrangentes, processando-os para que a rede reconheça e agrupe informações 

naturalmente. Por fim, o Aprendizado por Reforço envolve a análise de padrões para 

aprender as melhores decisões, ajustando-se continuamente com base em erros 

identificados, atribuindo maior peso aos padrões de acertos no processamento 

subsequente. Estes três métodos são empregados para criar modelos analíticos a partir de 
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dados de treinamento, eliminando a necessidade de codificação explícita de regras 

(Russell; Norvig, 2013). 

Além dos métodos destacados, o campo do Machine Learning oferece extensa 

variedade de algoritmos. Cada algoritmo é um conjunto de instruções e procedimentos 

matemáticos projetados para permitir que computadores aprendam padrões a partir dos 

dados disponibilizados. Visto que cada algoritmo apresenta suas vantagens e limitações, 

a escolha de um ou mais a serem aplicados para cada necessidade depende da sua 

natureza, e dos tipos de dados fornecidos. A melhor maneira de validar a eficácia do 

algoritmo é realizando de forma prática testes e validações. 

Atualmente, a aplicação prática em ML tornou-se uma tarefa mais acessível, 

comparado às últimas décadas. A popularidade de linguagens de programação, tais como 

Python, que possui uma comunidade ativa de desenvolvedores, e aliado à sua sintaxe clara 

e as bibliotecas disponíveis para a comunidade, permite que pessoas que não são 

especialistas em programação possam de forma simplificada a implementação dos 

diversos tipos de algoritmos (Müller; Guido, 2016). 

Das bibliotecas disponíveis, destaca-se a Scikit-learn, que permite o treinamento 

e a análise em diversos algoritmos de ML com a aplicação de poucas linhas de código. 

 

2. OBJETIVOS 

2.1.  Objetivo geral 

O objetivo geral desta pesquisa é analisar, na perspectiva exploratória e espacial, 

os sinistros de trânsito ocorridos entre 2021 e 2024 na área urbana de Rio Verde (GO). 

 

2.2.  Objetivos específicos 

Os objetivos específicos consistem em: 

a. Explorar os registros de sinistros de trânsito sem vítimas ocorridos em Rio 

Verde (GO) entre 2021 e 2024, com foco na identificação de padrões 

descritivos; 
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b. Analisar a distribuição espaço-temporal de sinistros de trânsito sem vítimas 

no município de Rio Verde (GO), entre 2021 e 2024, por meio de técnicas 

de análise espacial e agrupamento geográfico; 

c. Avaliar a viabilidade de modelos preditivos confiáveis para sinistros de 

trânsito mediante a aplicação de metodologia de detecção e correção de data 

leakage. 
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3. CAPÍTULO I 
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RESUMO 
 
Este estudo descreve os padrões espaço-temporais dos sinistros de trânsito sem vítimas 

registrados em Rio Verde-GO entre 2021 e 2024 e avalia a qualidade da base eletrônica 

da Agência Municipal de Mobilidade e Trânsito. Dos 7 926 registros originais, 7 911 

apresentaram dados completos, após exclusão de inconsistências mínimas, demonstrando 

completude atribuída ao preenchimento digital padronizado. A distribuição anual 

manteve estabilidade: 1.834 sinistros em 2021, 2 031 em 2022, 1.962 em 2023 e 2.085 

em 2024, com picos vespertinos em dias úteis. A concentração espacial abrangeu 

predominantemente os eixos centrais urbanos, especialmente Setor Central, Jardim Goiás 

e Bairro Popular, em que ocorrem 30,6% dos eventos. Colisões bilaterais constituíram 

43,6% dos registros, abalroamentos 38,9% e choques em objeto fixo 14,2%. Automóveis 

responderam por 59,6% dos veículos envolvidos, seguidos por caminhonetes (17,2%) e 

motocicletas (5,8%). Homens de 18 a 35 anos compuseram a maioria dos participantes, e 

84% dos sinistros ocorrem sob tempo bom e pista seca. Testes de alcoolemia foram 

aplicados em apenas 6,66% dos condutores, revelando positividade de 23% acima do 

limite legal. Esses achados indicam necessidade de intervenções direcionadas a 

interseções urbanas centrais e ampliação da fiscalização de álcool, enquanto confirmam 

o potencial analítico de bases eletrônicas completas para políticas públicas efetivas no 

município estudado. 

 
Palavras-chave: sinistros de trânsito; análise espaço-temporal; Rio Verde; base de dados 
eletrônica; segurança viária. 
 
ABSTRACT 
 

This study describes the spatiotemporal patterns of traffic crashes recorded in Rio Verde, 

Goiás, Brazil, from 2021 to 2024 and evaluates the quality of the electronic database 

maintained by the Municipal Mobility and Traffic Agency. Of 7,926 original records, 

7,911 contained complete data after minimal inconsistencies were removed, 

demonstrating completeness attributable to standardized digital entry. Annual distribution 

remained stable, with 1,834 crashes in 2021, 2,031 in 2022, 1,962 in 2023, and 2,085 in 

2024, with afternoon peaks on working days. Spatial concentration lay mainly along 

central urban corridors, notably the Setor Central, Jardim Goiás, and Bairro Popular, 

which accounted for 30.6% of events. Bilateral collisions constituted 43.6% of records, 
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side-impact crashes 38.9%, and single-vehicle impacts with fixed objects 14.2%. 

Automobiles represented 59.6% of vehicles involved, followed by pickup trucks (17.2%) 

and motorcycles (5.8%). Male participants aged 18–35 years predominated, and 84% of 

crashes occurred under clear weather and dry pavement. Breath-alcohol tests were applied 

to only 6.66% of drivers, of whom 23% exceeded the legal limit. These findings indicate 

the need for targeted interventions at central urban intersections and strengthened alcohol 

enforcement, while confirming the analytical potential of complete electronic databases 

for effective public policy in the municipality studied. 

 
Keywords: traffic crashes; spatiotemporal analysis; Rio Verde; electronic database; road 
safety. 
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3.1. Introdução 

Sinistros ou sinistros de trânsito são definidos como eventos que resultam em 

danos a veículos, cargas, pessoas, animais ou ao meio ambiente, ocorrendo em vias 

terrestres ou áreas de circulação pública e envolvendo pelo menos um elemento em 

movimento. De acordo com o Departamento Nacional de Infraestrutura de Transportes 

(DNIT), essa definição abrange tanto prejuízos materiais quanto impactos no tráfego e na 

infraestrutura viária. A terminologia “sinistro de trânsito” tem sido adotada em 

substituição a “acidente de trânsito”, conforme estabelecido pela Associação Brasileira 

de Normas Técnicas (ABNT) na revisão da norma NBR 10697. Essa mudança conceitual 

está alinhada ao Plano Nacional de Redução de Mortes e Lesões no Trânsito 

(PNATRANS) e à abordagem de Sistemas Seguros, reforçando a ideia de que tais eventos 

não são meramente fortuitos, mas podem ser prevenidos por meio de políticas e 

intervenções adequadas. 

Esses eventos são caracterizados por sua imprevisibilidade e natureza 

multifatorial, envolvendo variáveis como veículos, comportamento humano, 

infraestrutura viária e condições ambientais. De acordo com a Organização Mundial da 

Saúde (OMS), os sinistros de trânsito constituem uma das principais causas de morte e 

lesões em escala global, configurando-se como um desafio significativo para a saúde 

pública e a mobilidade urbana (WHO, 2023). 

Nas últimas décadas, os sinistros de trânsito tornaram-se um problema de grandes 

proporções em diversas partes do mundo, mesmo com o avanço nas tecnologias de 

segurança veicular e na implementação de políticas públicas voltadas à redução da 

acidentalidade. O aumento da frota de veículos, a expansão urbana desordenada e o 

crescimento populacional são fatores que contribuem para a complexidade desse 

fenômeno. Além das perdas humanas, os impactos econômicos são substanciais, 

abrangendo custos hospitalares, indenizações decorrentes de invalidez, morte ou danos 

corporais, danos materiais e prejuízos à produtividade, onerando significativamente os 

sistemas de saúde e seguridade social (BACCHIERI; BARROS, 2011). 

Ainda segundo Bacchieri e Barros (2011), estes eventos apresentam diversidade 

de causas, podendo estar relacionados a fatores humanos, como imprudência, fadiga, uso 

de substâncias psicoativas e desatenção; fatores ambientais, incluindo condições 

climáticas adversas e falhas na sinalização; e fatores mecânicos, como falhas nos sistemas 
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de frenagem e pneus em más condições. A análise aprofundada das causas e dinâmicas 

desses eventos é essencial para a formulação de políticas preventivas eficazes.  

No Brasil, os sinistros de trânsito continuam sendo uma das principais causas de 

mortalidade, representando um desafio significativo para a saúde pública e a segurança 

viária. Dados do Ministério da Saúde de 2023 apontam que o país registrou 33.743 mortes 

no trânsito, um número próximo ao de 2022, quando foram contabilizados 33.894 óbitos, 

evidenciando a persistência do problema apesar das medidas de fiscalização e educação 

viária implementadas nos últimos anos O impacto desses eventos não se restringe às 

vítimas e seus familiares, estendendo-se para a sociedade como um todo, com elevados 

custos hospitalares, previdenciários e produtivos. 

Além da elevada taxa de letalidade, os sinistros de trânsito no Brasil ocorrem de 

forma heterogênea, sendo influenciados por fatores como a densidade populacional, a 

infraestrutura viária e o comportamento dos condutores. A análise dos perfis das vítimas 

indica que a faixa etária entre 20 e 29 anos é uma das mais afetadas, sugerindo uma 

vulnerabilidade específica desse grupo no trânsito, segundo dados da Confederação 

Nacional dos Municípios. Paralelamente, o aumento da frota de veículos e a urbanização 

desordenada contribuem para a complexidade do problema, tornando essencial a 

formulação de políticas públicas baseadas em dados concretos e confiáveis (CNM, 2012).  

Diante da persistência dos altos índices de acidentalidade no Brasil, torna-se 

imprescindível compreender não apenas as causas desses eventos, mas também a maneira 

como são registrados e analisados. A precisão e a confiabilidade dos dados coletados são 

determinantes para a formulação de políticas eficazes e para a redução do número de 

sinistros. 

Nesse sentido, a coleta de dados sobre sinistros de trânsito desempenha papel 

central na formulação de políticas públicas eficazes voltadas para a segurança viária. A 

análise desses dados permite que gestores e pesquisadores desenvolvam estratégias 

baseadas em evidências para reduzir o número de sinistros e as consequências. De acordo 

com a Organização das Nações Unidas (ONU, 2020), a "Década de Ação para a 

Segurança no Trânsito 2021-2030" tem como um dos pilares a melhoria na coleta e na 

análise de dados, enfatizando que a disponibilidade de informações confiáveis é um 

requisito fundamental para monitorar o progresso das intervenções e avaliar a efetividade 

(ONU, 2021). Sem um banco de dados preciso, torna-se complexo identificar padrões de 

ocorrência, diagnosticar fatores de risco e projetar medidas preventivas adequadas.  
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A forma como os dados são registrados influencia diretamente na qualidade das 

análises realizadas. O processo de coleta pode ocorrer por meio de relatos das vítimas, 

registros policiais ou informações de instituições responsáveis pelo monitoramento 

viário. Entretanto, a existência de erros nesses registros, seja por imprecisão na descrição 

dos fatos ou pela ausência de variáveis essenciais, compromete a identificação de áreas 

críticas e reduz a confiabilidade das avaliações sobre a segurança viária (Hauer & 

Hakkert, 1988). Consequentemente, decisões baseadas em dados inconsistentes podem 

direcionar recursos de forma inadequada, impactando negativamente as estratégias de 

mitigação de riscos no trânsito. 

Estudos como os de Mello-Jorge (1990) já destacavam a importância da qualidade 

da informação sobre sinistros para o planejamento adequado de políticas públicas. 

Variáveis como a localização exata, a condição da via, o perfil dos envolvidos e as 

circunstâncias do sinistro são fundamentais para que as análises sejam precisas e 

contribuam para a implementação de medidas preventivas eficazes. A coleta estruturada 

e confiável de dados sobre sinistros de trânsito deve ser considerada um dos pilares da 

segurança viária. O desenvolvimento de medidas de prevenção depende, em grande parte, 

da exatidão das informações disponíveis, visto que inconsistências podem comprometer 

a tomada de decisões. Dessa forma, aprimorar os sistemas de registro e garantir a 

fidedignidade dos dados são desafios fundamentais para reduzir os impactos e promover 

a mobilidade segura nas vias públicas. 

Um dos problemas mais recorrentes é a subnotificação, que ocorre quando apenas 

uma parcela dos eventos é formalmente reportada. Pesquisas indicam que sinistros mais 

graves, especialmente os que resultam em fatalidades, têm maior probabilidade de serem 

registrados, enquanto sinistros leves, que envolvem apenas danos materiais ou ferimentos 

menores, frequentemente não entram nas estatísticas oficiais (Alsop & Langley, 2001). 

Esse viés afeta a capacidade de avaliar corretamente os riscos e os fatores contribuintes 

para a acidentalidade, comprometendo o planejamento de estratégias preventivas. Além 

da subnotificação, a inconsistência e a incompletude dos registros são problemas 

recorrentes na coleta de dados de trânsito. Informações essenciais, como a severidade das 

lesões, as condições ambientais no momento do sinistro e o comportamento dos 

condutores, nem sempre são devidamente registradas. Isso ocorre, em parte, pela falta de 

padronização nos procedimentos de coleta e uso de formulários inadequados, que 

compromete a integração desses registros com outras bases de dados, como sistemas 

hospitalares e estatísticas de tráfego (Hauer & Hakkert, 1988). 
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Diante dos desafios relacionados à acidentalidade viária e à qualidade dos dados 

coletados, torna-se fundamental compreender a realidade local para subsidiar políticas 

públicas mais eficazes. Nesse contexto, este estudo propõe uma análise exploratória dos 

sinistros de trânsito ocorridos no município de Rio Verde - GO entre os anos de 2021 e 

2024, com foco no entendimento e na identificação de padrões relevantes. 

 

3.2. Material e Métodos 

A técnica de análise exploratória de dados é empregada para identificar padrões, 

tendências e correlações nos dados coletados. Esta abordagem, conforme descrito por 

Levine et al. (1996), envolve a coleta, caracterização e apresentação de dados para 

descrever de forma abrangente as características observadas, facilitando a visualização de 

complexidades e nuances dos dados. 

Conforme Bussab e Morettin (2005), a estatística oferece uma variedade de 

ferramentas descritivas, como gráficos, tabelas e índices, que são essenciais para a 

organização e síntese dos dados, bem como reforça a importância dos gráficos como 

representações visuais que elucidam a evolução dos fenômenos ou as relações entre 

variáveis envolvidas, oferecendo compreensão clara e imediata dos padrões de sinistros. 

Este estudo adota uma abordagem descritiva de corte transversal, caracterizada 

pela observação de um conjunto de dados em período específico, utilizando dados 

secundários sobre sinistros de trânsito na malha urbana do município de Rio Verde, Goiás, 

ao longo do período de 2021 a 2024.  

 

Coleta de dados 

A coleta de dados deste estudo foi realizada através de duas fontes. A primeira fonte foi 

encaminhada pelo Núcleo Integrado de Análise Criminal e Inteligência, da 

Superintendência Integrada de Tecnologia em Segurança Pública de Rio Verde, que 

encaminhou o Relatório de Análise Criminal nº 109/2023 contendo dados de ocorrência 

mensal, óbitos registrados em sinistros, sexo, faixa etária, condições da via e bairros com 

a maior incidência. O relatório evidenciou que o processamento dos atendimentos das 

instituições Corpo de Bombeiros Militar do Estado de Goiás e Polícia Militar de Goiás, 

apesar de serem integrados pelo Registro de Atendimento Integrado – RAI, possui certa 

divergência, pois eventualmente o atendimento pré-hospitalar pode ser realizado pelo 
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Serviço de Atendimento Móvel – SAMU, que não possui acesso ao banco de dados. O 

relatório ressalta ainda que existem sinistros de trânsito que podem ser registrados pela 

Agência Municipal de Mobilidade e Trânsito – AMT, que também não está integrada ao 

sistema RAI, e o Núcleo Integrado não possuí acesso ao banco de dados.  

Outra base de dados, fornecida pela Agência Municipal de Mobilidade e Trânsito 

de Rio Verde (AMT), contemplava 7.926 registros de sinistros ocorridos entre 01 de 

janeiro de 2021 a 31 de dezembro de 2024. As informações que caracterizavam cada 

sinistro incluíam: data, horário, endereço, número de veículos envolvidos, tipo de sinistro 

e causa provável. 

Dos 7.926 registros disponibilizados, identificou-se que 15 não continham o link 

de acesso ao formulário do boletim de sinistro de trânsito. Em função da ausência dessa 

informação fundamental para a análise dos atributos associados a cada ocorrência, tais 

registros foram excluídos da base de dados. Assim, a base final analisada passou a conter 

7.911 registros válidos. 

 

Pré-processamento de dados 

Ao analisar os valores incorretos e inexistentes nos registros de sinistros de 

trânsito das duas bases de dados, observa-se que, embora a maioria destes dados coletados 

esteja devidamente registrada, há inconsistências pontuais que podem impactar análises 

mais detalhadas. A identificação desses valores ausentes ou incorretos é essencial para 

garantir a qualidade da base de dados e aprimorar futuras coletas, possibilitando maior 

precisão na identificação de padrões de acidentalidade.  

Para extrair e estruturar informações detalhadas dos registros de sinistros, foi 

desenvolvido um processo automatizado em três etapas, utilizando a linguagem Python e 

bibliotecas como pandas, requests e BeautifulSoup. Primeiro, a base original em formato 

CSV foi carregada, contendo links para os boletins de ocorrência de sinistro, disponíveis 

online. Com função automatizada, o conteúdo dessas páginas foi acessado e extraído em 

texto limpo, sendo salvo como arquivos .txt, identificados por um código único. 

Na segunda etapa, os arquivos de texto foram lidos e processados para separar as 

seções dos relatórios, que foram transformadas em pares chave-valor.  

Os conteúdos extraídos foram processados para identificar e estruturar apenas as 

variáveis operacionais relacionadas ao evento. Qualquer campo que pudesse identificar 

indivíduos foi descartado antes da consolidação da base analítica. 
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Por fim, os dados foram padronizados, reestruturados e integrados. Os registros 

de envolvidos foram convertidos para o formato “largo”, permitindo que cada linha 

representasse todos os envolvidos de um mesmo boletim. Em seguida, esses dados foram 

combinados com os dados gerais dos sinistros, gerando um único conjunto consolidado e 

livre de duplicações. O resultado foi exportado em um arquivo Excel, pronto para ser 

utilizado em análises estatísticas, geográficas e operacionais. 

O tratamento dos dados após a extração foi executado utilizando o software 

Microsoft Excel. As principais ações incluíram a correção de formatos de data e hora, a 

padronização de entradas textuais em campos de categorias de sinistros, condições 

meteorológicas e tipos de veículos envolvidos, bem como a verificação e correção de 

desvios ou dados duplicados. Além disso, foram identificadas e corrigidas 

inconsistências, tais como entradas ilógicas ou contraditórias, como por exemplo, 

registros marcados simultaneamente com condições de tempo seco e chuvoso. 

O processamento automático foi submetido a procedimento de validação por 

verificação manual. Para isso, selecionou-se uma amostra aleatória de boletins de 

ocorrência em formato original (HTML) e comparou-se o conteúdo com os registros 

estruturados, após a raspagem e integração. Essa conferência assegurou que os campos 

extraídos correspondessem fielmente às informações originais. 

A partir da contagem das variáveis "data de nascimento" e "sexo" associadas a 

cada boletim de ocorrência, foi possível inferir a quantidade de indivíduos envolvidos por 

registro, permitindo a construção de uma variável derivada que representa o total de 

envolvidos por sinistro. 

O Quadro 1 apresenta a relação de variáveis utilizadas para este estudo, com a 

descrição e os respectivos valores, após a extração dos dados dos formulários e o pré-

processamento.  
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Quadro 1 - Relação de variáveis e a respectiva descrição. 

Variável Descrição 

Boletim Número do boletim de ocorrência 
Data Data do sinistro 
Mês Mês em que ocorreu o sinistro 
Ano Ano em que ocorreu o sinistro 

Dia semana Dia da semana em que ocorreu o sinistro 
Hora Horário do sinistro 

Período Período do dia em que ocorreu o sinistro 
Coordenada Coordenada geográfica do sinistro 

Bairro Nome do bairro em que ocorreu o sinistro 
Natureza Tipo de sinistro ocorrido 

Controle tráfego Indicação de tráfego no local 
Zona Classificação da zona em que ocorreu o sinistro 
Pista Descrição das características da pista em que ocorreu o sinistro 

Pavimento Tipo de pavimento da via 
Condições da via Descrição da via em que ocorreu o sinistro 

Condições do tempo Condições climáticas no momento do sinistro 
Envolvidos Quantidade de envolvidos 

Data nascimento Data de nascimento do(s) envolvido(s) 
Sexo Sexo dos(s) envolvido(s) 

Exame Realização do exame toxicológico 
Dosagem Valor do exame toxicológico 

Tipo Tipo de veículo do(s) envolvido(s) 
 

A qualidade dos dados é um aspecto fundamental para a confiabilidade das 

análises e a tomada de decisões baseadas em evidências. Segundo Mahanti (2019), “a 

qualidade dos dados é a capacidade dos dados de satisfazer os requisitos técnicos, de 

sistema e de negócios declarados de uma empresa”. No contexto da ciência de dados 

aplicada, garantir a integridade, completude e consistência da base é essencial para 

assegurar a robustez dos resultados e a validade das inferências. 

Neste estudo, destaca-se que os dados foram coletados por meio de formulários 

eletrônicos, utilizados pela Agência Municipal de Mobilidade e Trânsito (AMT) de Rio 

Verde. Esse processo automatizado de entrada de dados minimiza significativamente o 

risco de erros de preenchimento e inconsistências manuais, comuns em registros feitos 

em papel ou por meio de digitação não supervisionada. Como resultado, a necessidade de 

pré-processamento foi bastante reduzida. As etapas de tratamento limitaram-se, em 

grande parte, à padronização de formatos, como a conversão de variáveis temporais (por 

exemplo, horário dos sinistros) para estruturas compatíveis com os modelos de análise. 
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A Figura 2 ilustra a interface do formulário eletrônico utilizado pela AMT de Rio 

Verde, e evidencia o controle automatizado de campos e a estruturação dos dados em 

conformidade com os requisitos técnicos de entrada. Esse padrão contribui decisivamente 

para a elevação da qualidade dos dados e, consequentemente, para a confiabilidade das 

análises realizadas. 

 
Figura 2 – Formulário eletrônico de coleta de dados de sinistro. 

 
 

A seguir, procede-se à apresentação das análises e resultados obtidos, com os 

dados tratados, com vistas a explorar de forma sistemática os dados. 

 

3.3. Resultados e Discussão 

A análise descritiva permite compreender melhor os padrões e tendências 

apresentados pelos dados, fornecendo uma base sólida para interpretação e tomada de 

decisão. Por meio de consultas estruturadas, agrupamentos e ordenações, é possível gerar 
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visualizações gráficas e extrair informações relevantes que auxiliaram as próximas etapas 

da análise. Segundo Yamamoto (2009), análise descritiva refere-se ao conjunto de 

técnicas utilizadas para organizar, resumir e descrever os aspectos principais de um 

conjunto de dados, fornecendo uma visão geral das características dos dados sem tirar 

conclusões além dos dados analisados. Os resultados da distribuição dos sinistros ao 

longo do tempo auxiliam na compreensão de padrões sazonais e horários. Os dados 

analisados foram organizados de acordo com o ano, o mês, o dia da semana e o período 

do dia, permitindo uma avaliação da frequência dos eventos em diferentes escalas 

temporais. 

 

Análise temporal 

Entre os anos de 2021 e 2024, foram registrados, respectivamente, 1.833, 2.031, 

1.962 e 2.085 sinistros de trânsito no município de Rio Verde. Esses valores 

correspondem, na mesma ordem, a 23,17%, 25,67%, 24,80% e 26,36% do total de 

ocorrências registradas no período. 

No recorte mensal, janeiro apresentou 595 sinistros (7,52%), fevereiro 602 

(7,61%), março 703 (8,89%), abril 649 (8,20%), maio 719 (9,09%), junho 676 (8,55%), 

julho 674 (8,52%), agosto 724 (9,15%), setembro 656 (8,29%), outubro 629 (7,95%), 

novembro 680 (8,60%) e dezembro 604 (7,63%). 

Na análise por dia da semana, com base na soma dos registros entre 2021 e 2024, 

domingo concentrou 650 ocorrências (8,22%), segunda-feira 1.253 (15,84%), terça-feira 

1.255 (15,86%), quarta-feira 1.243 (15,71%), quinta-feira 1.227 (15,51%), sexta-feira 

1.260 (15,93%) e sábado 1.023 (12,93%). 

No recorte por turno, considerando a soma dos registros no período analisado, a 

tarde concentrou o maior volume de sinistros, com 3.296 ocorrências (41,66%), seguida 

da manhã, com 2.486 (31,42%), e da noite, com 1.898 (23,99%). O turno da madrugada 

apresentou o menor número de registros, totalizando 231 sinistros, o que corresponde a 

2,92% do total. 

Os mapas de calor oferecem uma representação visual da distribuição temporal 

dos sinistros de trânsito. A partir dessa perspectiva, a Figura 3 apresenta a concentração 

de ocorrências por mês ao longo dos quatro anos analisados, enquanto a Figura 4 

evidencia a distribuição por dia da semana e a Figura 5 organiza os registros segundo os 

turnos do dia. 
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Figura 3 - Mapa de calor de sinistros por mês e ano. 

 
 

Figura 4 - Mapa de calor de sinistros por dia da semana e ano. 

 
 

Figura 5 - Mapa de calor de sinistros por turno e ano. 
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A quantidade de sinistros diários ao longo de um ano, comparando os períodos de 

2021 a 2024, é evidenciada na Figura 6, com a aplicação da média móvel de 30 dias. 

Observa-se que a frequência diária de sinistros apresenta grande variabilidade, 

com oscilações frequentes ao longo do ano. Esse comportamento sugere que os sinistros 

não ocorrem de maneira uniforme, mas sim influenciados por fatores específicos de cada 

período. Picos de sinistros podem ser percebidos em diferentes momentos do ano, o que 

pode estar relacionado a datas comemorativas, períodos de maior movimentação urbana 

e variações nas condições meteorológicas. 

 

Figura 6 – Média móvel (30 dias) do número de sinistros por dia. 

 
 

A Figura 7 relaciona a distribuição dos sinistros ao longo dos dias da semana e a 

hora do dia, destacando os períodos de maior concentração de sinistros com base na 

totalização dos dados entre 2021 e 2024. 
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Figura 7 - Mapa de calor de sinistros por dia da semana e hora. 

 

 

Análise espacial 

A Figura 8 apresenta a distribuição espacial dos sinistros de trânsito no município 

de Rio Verde entre os anos de 2021 e 2024. A visualização, construída a partir da 

dispersão dos pontos de ocorrência georreferenciados, evidencia uma concentração 

significativa de sinistros na zona urbana central do município, com dispersões secundárias 

em regiões periféricas e ao longo dos principais corredores viários. A utilização de pontos 

com baixa opacidade permite identificar áreas com sobreposição elevada, as quais se 

destacam visualmente como zonas de maior densidade de registros.  

 
Figura 8 – Distribuição espacial dos sinistros em Rio Verde. 
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A Figura 9 apresenta a distribuição anual dos sinistros de trânsito nos dez bairros 

com maior número de registros em Rio Verde. Os três bairros com maior incidência, Setor 

Central (15,9%), Jardim Goiás (8,32%) e Bairro Popular (6,35%), concentram, juntos 

30,57% de todos os registros da base. No total, a base contempla registros em 147 bairros 

distintos, reforçando a ampla dispersão espacial das ocorrências no município. 

 
Figura 9 – Top 10 bairros com maior número de sinistros. 

 

 

Entre os anos de 2021 e 2024, alguns bairros de Rio Verde apresentaram variações 

significativas no número de sinistros de trânsito. Do ponto de vista do crescimento 

percentual, destacam-se bairros que, embora tenham iniciado o período com um número 

reduzido de ocorrências, registraram aumentos expressivos. É o caso do Jardim Mondale 

e do Jardim Brasília, que passaram de 1 sinistro em 2021 para 8 em 2024, correspondendo 

a um crescimento de 700% em ambos. O Residencial Jardim Bougainville teve aumento 

de 3 para 17 ocorrências no mesmo intervalo, resultando em elevação de 466,7%. Outros 

bairros com crescimento relevante incluem a Vila Menezes (240%), o Jardim Adriana 

(233,3%), o Residencial Atalaia (300%), e o Condomínio Nova Aliança Premium 

(200%). 

Por outro lado, alguns bairros apresentaram decréscimos acentuados, com 

destaque para aqueles que, apesar de registrarem sinistros em 2021, zeraram as 
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ocorrências em 2024. É o caso da Vila Mariana Prolongamento I e II, Vila Santo André, 

Distrito Agroindustrial de Rio Verde I (DARV I), Vila Amália II e outros, todos com 

variação negativa de 100%. 

 
Análise das características e condições dos sinistros 

A Tabela 1 apresenta a distribuição dos sinistros de trânsito por tipologia, 

considerando os registros entre os anos de 2021 e 2024. Observa-se forte concentração 

em três categorias principais: colisão (44%), abalroamento (39%) e choque em objeto 

fixo (14%), que, somadas, correspondem a 97% do total de ocorrências. Essa 

predominância sugere que a maioria dos sinistros envolve veículos em movimento, 

possivelmente em cruzamentos, mudanças de faixa ou situações de tráfego intenso em 

áreas urbanas. 

 
Tabela 1 – Distribuição dos sinistros por natureza. 

Natureza 2021 2022 2023 2024 Total 
Colisão 781 42,6% 872 42,9% 881 44,9% 918 44,0% 3.452 43,6% 
Abalroamento 729 39,8% 779 38,4% 746 38,0% 826 39,6% 3.080 38,9% 
Choque em objeto fixo 250 13,6% 324 16,0% 272 13,9% 276 13,2% 1.122 14,2% 
Outro 45 2,5% 35 1,7% 47 2,4% 50 2,4% 177 2,2% 
Atropelamento 21 1,1% 15 0,7% 7 0,4% 9 0,4% 52 0,7% 
Tombamento 4 0,2% 2 0,1% 3 0,2% 5 0,2% 14 0,2% 
Capotamento 3 0,2% 4 0,2% 3 0,2% 0 0% 10 0,1% 
Atropelamento animal 0 0% 0 0% 3 0,2% 1 0,05% 4 0,1% 

Total 1.833 100% 2031 100% 1.962 100% 2.085 100% 7911 100% 
 

A análise temporal revela que a distribuição percentual dessas categorias manteve-

se relativamente estável ao longo dos quatro anos, indicando que os fatores estruturais 

associados à dinâmica do trânsito local, como o traçado viário, sinalização e 

comportamento dos condutores, pouco alteraram no período. 

Outras tipologias, como atropelamento (0,7%), tombamento (0,2%), capotamento 

(0,1%) e atropelamento de animal (0,1%), apresentam incidência bastante reduzida.  

A categoria “Outro” concentra 2,2% dos registros, valor superior ao de algumas 

tipologias específicas, podendo indicar falhas na padronização do registro ou uso 

excessivo dessa classificação em casos pouco detalhados. 
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A análise da distribuição dos veículos envolvidos em sinistros, considerando os 

cinco tipos mais frequentes, revela a predominância expressiva dos automóveis, que 

somam 9.051 registros, correspondendo a 59,64% do total consolidado. Em seguida, 

destacam-se as caminhonetes com 2.607 registros (17,17%), as motocicletas com 873 

registros (5,75%), os caminhões com 670 registros (4,42%) e as camionetas com 540 

registros (3,56%). Os demais tipos de veículos, totalizam 1.373 registros, representando 

9,05% dos casos. 

Ao cruzar essas informações com a natureza dos sinistros (Tabela 2), observa-se 

que a maior concentração de automóveis ocorre em eventos classificados como colisão 

(4.328) e abalroamento (3.454), que juntos respondem por mais de 86% dos 

envolvimentos com esse tipo de veículo. A distribuição das caminhonetes segue padrão 

semelhante, com forte presença nas colisões (1.257) e abalroamentos (982). As 

motocicletas, por sua vez, mantêm presença significativa tanto em abalroamentos (435) 

quanto em colisões (340). 

Os caminhões aparecem com maior frequência em abalroamentos (255) e colisões 

(218). Já as camionetas, embora em número inferior, apresentam padrão semelhante aos 

veículos de maior porte, com maior ocorrência em colisões e abalroamentos. 

 
Tabela 2 – Distribuição dos sinistros por natureza e tipo de veículo. 

Natureza  Automóvel Caminhão Camin-
honete Camioneta Motocicleta Outros 

veículos 
Colisão 4.328 47,8% 218 32,5% 1.257 48,2% 239 44,3% 340 38,9% 515 37,5% 
Abalroa-
mento 3.454 38,2% 255 38,1% 982 37,7% 213 39,4% 435 49,8% 549 40,0% 

Choque 
em objeto 
fixo 

1.004 11,1% 168 25,1% 299 11,5% 71 13,1% 70 8,0% 267 19,4% 

Outras 
naturezas 265 2,9% 29 4,3% 69 2,6% 17 3,1% 28 3,2% 42 3,1% 

Total 9.051 100% 670 100% 2.607 100% 540 100% 873 100% 1.373 100% 

 
No que se refere à condição do tempo (Figura 10), observa-se que a maioria dos 

sinistros ocorreu sob tempo bom (6.646), representando um volume significativamente 

superior em relação às demais categorias. Mesmo assim, nota-se a existência de um 

número relevante de sinistros em períodos nublados (678) e chuvosos (410), o que totaliza 

1.088 (13,75%). Quanto à condição da via (Figura 11), verifica-se que a maioria dos 

sinistros ocorreu em vias secas, o que acompanha a distribuição observada no gráfico da 

condição do tempo. Os registros evidenciam também que a maior parte dos sinistros 



 
 

 
 

39 

ocorreu em vias asfaltadas, representando 98,51%, seguido de concreto, com 0,68% e 

paralelepípedo com 0,51%. As demais categorias somadas representam 0,3% dos 

registros (terra e cascalho). Os dados apresentam ainda que 99,22% dos sinistros 

ocorrerem em área urbana, enquanto apenas 0,78% foram registrados em zona rural. 

 
Figura 10 - Sinistros por condição do tempo. 

 
 

Figura 11 - Sinistros por condição da via. 
 

 
 
Caracterização dos Envolvidos nos Sinistros 

Com base na distribuição do número de envolvidos por sinistro, observou-se que 

a maioria dos registros refere a eventos com dois envolvidos, totalizando 6.253 

ocorrências (78,92%). Essa predominância é compatível com colisões envolvendo dois 

veículos, o que é típico em zonas urbanas. 

Em segundo lugar, estão os sinistros com apenas um envolvido, que somam 1.235 

registros (15,59%). Esses casos podem estar relacionados, por exemplo, a situações de 

perda de controle do veículo, choques em objetos fixos ou quedas de motociclistas sem 
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outro veículo envolvido. Já os registros com três envolvidos representam 336 ocorrências 

(4,25%). Casos com quatro ou mais envolvidos são raros, com apenas 33 registros (0,6%). 

Um ponto que merece atenção é a presença de 58 registros com zero envolvidos 

declarados (0,72%) do total. Essa situação provavelmente refere-se a sinistros em que os 

condutores evadiram do local antes da chegada da autoridade responsável pelo registro, 

impossibilitando a identificação dos envolvidos no momento da coleta dos dados. A 

Figura12 apresenta graficamente estes dados. 

 
Figura 12 - Distribuição dos Sinistros por Número de Envolvidos. 

 

 
 

A Tabela 3 apresenta a análise cruzada entre o número de envolvidos e a natureza 

do sinistro, revelando que a maioria das ocorrências classificadas como colisão envolveu 

dois participantes, com 2.896 registros, o que representa 83,89% dos casos dessa 

categoria. Situação semelhante é observada nos abalroamento, com 2.604 ocorrências 

(84,55%) com dois envolvidos. 

Nos choques em objeto fixo, há maior dispersão: 53,21% ocorrem com dois 

envolvidos e 38,06% com apenas um, sugerindo perda de controle do veículo. Nos 

atropelamentos, 76,92% dos registros envolvem dois participantes, e 19,23% apenas um. 

Os tombamentos e capotamentos ocorrem, majoritariamente, com um único envolvido 

(64,29% e 50%, respectivamente), compatível com eventos em que apenas um veículo 

está em movimento. Por fim, os atropelamentos de animal aparecem na maioria com 

apenas um envolvido (75%). 
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Tabela 3 – Distribuição dos sinistros por natureza e no de envolvidos. 

Natureza / 
Envolvidos 0 1 2 3 4 5 6 

Colisão 8  
(0.23%) 

320 
(9.27%) 

2896 
(83.89%) 

201 
(5.82%) 

23 
(0.67%) 

4  
(0.12%) 

0  
(0%) 

Abalroamento 0  
(0.0%) 

402 
(13.05%) 

2604 
(84.55%) 

69 
(2.24%) 

3  
(0.1%) 

2  
(0.06%) 

0  
(0%) 

Choque em objeto 
fixo 

43 
(3.83%) 

427 
(38.06%) 

597 
(53.21%) 

47 
(4.19%) 

5  
(0.45%) 

2  
(0.18%) 

1  
(0.09%) 

Outro 4  
(2.26%) 

57 
(32.2%) 

99 
(55.93%) 

15 
(8.47%) 

2  
(1.13%) 

0  
(0%) 

0  
(0%) 

Atropelamento 0  
(0.0%) 

10 
(19.23%) 

40 
(76.92%) 

2  
(3.85%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

Tombamento 1  
(7.14%) 

9 
(64.29%) 

4 
(28.57%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

Capotamento 1  
(10.0%) 

5  
(50.0%) 

2  
(20.0%) 

2  
(20.0%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

Atropelamento 
animal 

0  
(0.0%) 

3  
(75.0%) 

1  
(25.0%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

0  
(0%) 

 

A distribuição por faixa etária dos envolvidos em sinistros (Figura 13) mostra 

concentração nas idades entre 18 e 35 anos, que correspondem à maioria dos registros. 

As faixas de 18 a 25 e de 26 a 35 anos lideram em número absoluto, refletindo a maior 

exposição desse grupo à condução de veículos e a comportamentos de maior risco no 

trânsito. As faixas entre 36 e 55 anos também apresentam participação relevante, 

enquanto os registros diminuem progressivamente a partir dos 56 anos. Casos envolvendo 

menores de 18 anos são pouco frequentes, possivelmente por não estarem habilitados ou 

formalmente identificados como condutores. 

 
Figura 13 - Distribuição por Faixa Etária dos Envolvidos nos Sinistros. 

 

 
 

A distribuição por sexo dos envolvidos nos sinistros indica que 10.792 registros 

correspondem ao sexo masculino, o que representa 72,0% do total, enquanto 4.197 
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registros são do sexo feminino, correspondendo a 28,0%. A soma total de registros 

(14.989) ultrapassa o número de sinistros registrados, uma vez que em grande parte dos 

eventos há mais de um envolvido. 

O cruzamento entre sexo e natureza do sinistro revela que, independentemente do 

tipo de ocorrência, os homens representam a maioria dos envolvidos em todos os tipos de 

sinistros registrados. 

Nos abalroamentos e colisões, que concentram o maior volume de registros, as 

mulheres correspondem a 28,39% e 29,01% dos casos, respectivamente, enquanto os 

homens estão presentes em mais de 70% dessas ocorrências. 

Em sinistros do tipo choque em objeto fixo, a participação feminina é ainda menor 

(23,7%), indicando possível associação com perda de controle veicular em contextos em 

que a condução é predominantemente masculina. 

Nos atropelamentos, as mulheres estão envolvidas em 26,8% dos casos, enquanto 

nos tombamentos e atropelamentos de animal, não há registro feminino, com 100% dos 

envolvidos sendo homens. 

 

Análise de Alcoolemia 

A realização do teste de alcoolemia é um procedimento fundamental para a 

caracterização adequada de sinistros de trânsito, permitindo identificar a presença de 

substâncias psicoativas que podem comprometer a capacidade de condução. O consumo 

de álcool é amplamente reconhecido como fator de risco associado ao aumento da 

gravidade e da ocorrência de sinistros, afetando reflexos, tempo de reação e julgamento 

do condutor. A testagem sistemática, além de fornecer subsídios técnicos para a 

responsabilização legal, contribui para o monitoramento de padrões de comportamento 

no trânsito e para a formulação de políticas públicas de prevenção, especialmente no que 

se refere à fiscalização e à educação para a segurança viária. 

Os dados indicam que entre os 7.911 registros de sinistros, 527 condutores 

(6,66%) realizaram o teste de alcoolemia no local. Em 7.375 dos casos (93,22%), não 

teve o teste realizado, enquanto 9 condutores (0,11%) recusaram a fazê-lo. 

Analisando a distribuição dos testes de alcoolemia realizados por dia da semana, 

observa-se que os testes são mais frequentemente aplicados nos finais de semana, 

especialmente, com destaque para o ano de 2022, que registrou 51 testes realizados aos 

sábados e 35 aos domingos, superando os demais anos nesse recorte (Figura 14).  
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Em relação aos turnos do dia, o período noturno concentra a maior parte dos testes 

em todos os anos, com destaque para 2022, quando foram registrados 108 testes, seguido 

de 74 em 2023 e 59 em 2024. O turno da tarde aparece como o segundo período com mais 

testes realizados, mantendo certa estabilidade ao longo dos anos, entre 32 e 35 registros 

entre 2022 e 2024. Na madrugada, o número de testes manteve-se relativamente estável 

entre 2021 e 2023, com leve queda em 2024 (de 17 para 11). Apesar da menor quantidade, 

esse turno ainda é relevante para fins de fiscalização, considerando o potencial risco 

associado à condução sob influência de álcool nesse horário (Figura 15). 

 
Figura 14 - Testes de Alcoolemia Realizados no Local por Dia da Semana e Ano. 

 
 

Figura 15 - Testes de Alcoolemia Realizados no Local por Turno e Ano. 

 
 

Segundo determinação do Conselho Nacional de Trânsito (Contran), conforme a 

Resolução nº 432/2013, são estabelecidos os intervalos de alcoolemia e as respectivas 

implicações legais. Os valores até 0,04 mg/L indicam liberação do condutor; os valores 

compreendidos entre 0,05 mg/L e 0,33 mg/L caracterizam infração gravíssima; e valores 
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iguais ou superiores a 0,34 mg/L configuram crime de trânsito, com penalidades mais 

severas. 

A Figura 16 apresenta a distribuição dos testes de alcoolemia por faixa de 

dosagem, o que evidencia que a maior parte dos condutores testados apresentaram 

resultado igual a zero. Foram 806 testes (cerca de 77%) com 0 mg/L, o que indica ausência 

de álcool no momento da abordagem. Os valores referem-se a todos os testes realizados, 

levando em consideração que há mais de um envolvido em alguns registros de sinistro. 

A segunda maior faixa é a de dosagens acima de 0,33 mg/L, com 177 registros, o 

que representa um percentual relevante entre os testes positivos. Essa concentração sugere 

que, entre os condutores que apresentaram presença de álcool, muitos estavam acima do 

limite legal de tolerância, configurando infração gravíssima segundo o Código de 

Trânsito Brasileiro. 

A faixa intermediária de 0,041 a 0,33 mg/L reuniu 52 casos, e a de 0,01 a 0,04 

mg/L, apenas 4 registros, indicando que resultados próximos ao limite de detecção ou em 

níveis baixos foram menos frequentes. 

 
Figura 16 - Distribuição dos Testes de Alcoolemia por Faixa de Dosagem. 

 
 

3.4. Conclusão 

Este estudo examinou 7.911 sinistros de trânsito, selecionados de um universo de 

7.926 registros eletrônicos gerados pela Agência Municipal de Mobilidade e Trânsito de 

Rio Verde entre 2021 e 2024. A coleta digital reuniu informações padronizadas e 

georreferenciadas, reduzindo o esforço de tratamento dos dados, minimizou erros de 
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preenchimento e elevou a qualidade global da base. No âmbito metodológico, o emprego 

de coleta eletrônica demonstrou eficaz em reduzir substancialmente erros de 

preenchimento e simplificar o pré-processamento, gerando uma base de alta qualidade 

apta a análises reprodutíveis. Em consequência, foi possível realizar análises temporais e 

espaciais com maior acurácia, além de demonstrar que todo o fluxo de atualização pode 

ser automatizado sem intervenção manual, liberando os dados quase em tempo real.  

Os sinistros concentram-se nos eixos viários dos bairros Setor Central, Jardim 

Goiás e Bairro Popular; apresentam distribuição anual relativamente estável e atingem 

pico nas tardes de dias úteis. Colisões entre veículos respondem por cerca de 44%, 

seguidas de abalroamentos laterais e choques em objeto fixo. O perfil predominante dos 

envolvidos corresponde a homens entre 18 e 35 anos. 

Os dados mostraram distribuição anual estável, variando de 1.834 ocorrências em 

2021 a 2.094 em 2024, com pico vespertino em dias úteis. No âmbito espacial, verificou-

se concentração de eventos nos bairros Setor Central, Jardim Goiás e Bairro Popular, 

resultado que se tornou evidente graças às coordenadas armazenadas em cada registro. 

As tipologias predominantes foram colisões entre veículos, que representaram 

aproximadamente 44% do total, seguidas de abalroamentos laterais e choques em objeto 

fixo; juntas, essas três categorias responderam por mais de 95% dos sinistros. Quanto ao 

perfil de vítimas e condutores, a maioria era composta por homens com idade entre 18 e 

35 anos, e apenas 6,7% dos condutores submetidos ao teste de alcoolemia apresentaram 

resultado positivo. 

Esses achados confirmam que a coleta eletrônica garante dados de alta qualidade 

e reforçam, em termos teóricos, a evidência de que o risco viário se concentra em 

corredores centrais de cidades médias brasileiras, reduzindo a necessidade de tratamento 

manual e permite análises mais acuradas. 

Recomenda-se integrar esses registros à base da Polícia Militar, que contém dados 

detalhados sobre vítimas, a fim de ampliar o conjunto de variáveis clínicas e fortalecer 

futuras análises preditivas. A combinação de dados de alta qualidade, localização precisa 

e integração interinstitucional cria condições favoráveis para políticas de segurança viária 

fundamentadas em evidências quantitativas. Sugere-se, ainda, integrar dados hospitalares, 

desenvolver modelos espaço-temporais preditivos e avaliar intervenções de engenharia, 

fiscalização ou educação por meio de desenhos antes-e-depois ou controle sintético. A 

padronização periódica das tipologias, para reduzir a categoria ‘Outro’, complementa a 

agenda de melhoria contínua.  
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4. CAPÍTULO II 
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RESUMO 
 
O estudo avaliou 6.857 sinistros de trânsito sem vítimas ocorridos em Rio Verde (GO) 
entre 2021 e 2024. Empregaram-se estimativa de densidade por kernel (KDE) para 
representar padrões contínuos, índice de Moran Global e Indicadores Locais de 
Associação Espacial (LISA) para medir autocorrelação e o algoritmo DBSCAN para 
análise linear do principal corredor viário da cidade. A KDE apontou aglomeração 
persistente de ocorrências na Avenida Presidente Vargas e nas rodovias BR-452/GO-174; 
gradientes decrescentes foram observados nas zonas periféricas. O Moran Global indicou 
dependência espacial positiva significativa (I = 0,5897; p = 0,001), enquanto o LISA 
evidenciou clusters Alto-Alto coincidentes com a malha arterial central. No recorte da 
Avenida Presidente Vargas, o DBSCAN isolou 353 sinistros distribuídos ao longo de 7,23 
km, destacando trechos críticos. Os resultados reforçam a relação entre hierarquia viária 
e risco e sustentam recomendações de intervenções de engenharia, fiscalização 
direcionada ao modal leve e adoção de painéis geoespaciais para monitoramento 
contínuo, alinhadas às metas do PNATRANS e da Década 2021-2030. 

 
Palavras-chave: sinistros de trânsito; análise espacial; Moran I; KDE; Rio Verde-GO. 
 
ABSTRACT 
 
This study analyzed 6,857 non-injury traffic crashes recorded in Rio Verde (GO), Brazil, 
between 2021 and 2024. Kernel Density Estimation (KDE) was applied to identify 
continuous spatial patterns, while Global Moran’s I and Local Indicators of Spatial 
Association (LISA) were used to measure spatial autocorrelation. The DBSCAN 
algorithm was employed to analyze the linear distribution of crashes along the city’s main 
traffic corridor. KDE revealed a persistent concentration of crashes along Presidente 
Vargas Avenue and highways BR-452/GO-174, with decreasing gradients toward 
peripheral areas. Global Moran’s I indicated significant positive spatial dependence (I = 
0.5897; p = 0.001), and LISA identified High-High clusters aligned with the central 
arterial road network. In the specific analysis of Presidente Vargas Avenue, DBSCAN 
isolated 353 crashes distributed along 7.23 km, highlighting the critical segments. The 
findings reinforce the relationship between road hierarchy and crash risk and support 
recommendations for engineering interventions, targeted enforcement on light-duty 
vehicles, and the adoption of geospatial dashboards for continuous monitoring—aligned 
with the goals of PNATRANS and the UN Decade of Action for Road Safety 2021–2030. 
 
Keywords: traffic crashes; spatial analysis; Moran’s I; KDE; Rio Verde (Brazil). 
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4.1. Introdução 

A segurança viária permanece um problema de saúde pública global, responsável 

por cerca de 1,19 milhão de mortes anuais, sobretudo em países de renda média e baixa 

(OMS, 2023). Reconhecendo a gravidade da situação, a Resolução 74/299 da 

Assembleia Geral das Nações Unidas instituiu a Década de Ação pela Segurança no 

Trânsito 2021‑2030, estabelece a meta de reduzir em pelo menos 50% as mortes e lesões 

no trânsito nesse intervalo (ONU, 2020). 

No cenário internacional, o Brasil é o terceiro país no mundo com mais mortes no 

trânsito, atrás apenas de Índia e a China. 

Em 2024, o Registro Nacional de Sinistros e Estatísticas de Trânsito (RENAEST) 

contabilizou 1.140.114 sinistros de trânsito no Brasil, envolvendo 1.689.779 veículos e 

resultando em 1.414.873 pessoas feridas ou ilesas e 21.525 óbitos. Esses números 

correspondem a taxa de 10,04 mortes por 100 mil habitantes e a 1,74 mortes por 10 mil 

veículos, com óbitos representando 1,89% do total de sinistros registrados no período. 

Ainda que a análise deste estudo se concentre nos sinistros sem vítimas, esses dados 

fornecem um panorama geral da magnitude do fenômeno no país, evidenciando o impacto 

tanto em termos absolutos quanto proporcionais. 

Esses indicadores evidenciam a magnitude do problema no país e reforçam a 

urgência de estratégias fundamentadas em precisão metodológica e terminológica para 

orientar políticas públicas eficazes. 

Diante desse cenário, o Plano Nacional de Redução de Mortes e Lesões no 

Trânsito (PNATRANS) alinha‐se a essa orientação internacional e embasa políticas 

públicas voltadas à mobilidade segura. O alinhamento dessas estratégias globais e 

nacionais depende também de precisão conceitual e uniformidade terminológica, fatores 

essenciais para a análise e comparação de dados de sinistros. Em consonância com a 

revisão da ABNT NBR 10697:2018, que substituiu o termo “acidente de trânsito” por 

“sinistro de trânsito” para reforçar a compreensão de que a maioria desses eventos é 

evitável e não fruto de mero acaso, este estudo adota essa terminologia, destacando a 

perspectiva de que tais ocorrências são preveníveis e passíveis de mitigação por meio de 

políticas públicas eficazes. 

Embora capitais brasileiras já contem com diagnósticos espaciais consolidados 

(MELO; MENDONÇA, 2021; PAIXÃO et al., 2015; SILVA; PEREIRA; ALVES, 2021), 
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municípios médios do interior, cujas malhas viária e urbana convivem com tráfego 

agroindustrial intenso, carecem de investigações equivalentes. Rio Verde (GO), polo 

regional do Sudoeste Goiano, apresenta frota total de 189.862 veículos e população 

estimada em 237.092 habitantes (IBGE, 2022). Dados do Relatório Estatístico de 

Sinistros de Trânsito (RENAEST/SENATRAN) indicam, para o período 2021‑2024, 

15.824 sinistros registrados, que envolveram 22.523 veículos, resultaram em 23.077 

pessoas feridas ou ilesas e 102 óbitos, resultando em coeficiente de 43,02 óbitos/100.000 

habitantes e 5,37 óbitos/10 000 veículos (SENATRAN, 2024). 

Diante desse contexto, buscou‑se analisar a distribuição espacial e a evolução 

temporal dos sinistros de trânsito em Rio Verde (GO) entre 2021 e 2024, empregando 

KDE, Moran I/LISA e DBSCAN. Especificamente, buscou‑se: (i) caracterizar a variação 

espaço‑temporal dos sinistros em escala municipal e intraurbana; (ii) identificar hotspots 

e corredores críticos, com destaque para o eixo da Avenida Presidente Vargas; e (iii) 

discutir implicações para políticas públicas locais de segurança viária, em consonância 

com as metas do PNATRANS e da Década 2021‑2030. 

Ferramentas de análise espacial têm demonstrado elevado potencial para revelar 

padrões de distribuição de sinistros, identificar hotspots e respaldar intervenções baseadas 

em evidências. Estudos como Plug, Xia e Calfield (2011), Shafabakhsh, Famili e 

Bahadori (2017) e Munasinghe (2023) aplicaram, respectivamente, Estimativa de 

Densidade por Kernel (KDE), estatísticas globais e locais de autocorrelação (Moran I e 

LISA) e o algoritmo DBSCAN para delimitação de áreas críticas, fornecendo referenciais 

metodológicos consistentes. 

O presente trabalho contribui para suprir lacuna na literatura sobre cidades 

intermediárias brasileiras e fornece subsídios técnicos ao planejamento urbano‑viário de 

Rio Verde, favorecendo a priorização de investimentos em infraestrutura segura, 

fiscalização e educação para o trânsito. 
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4.2. Material e Método 

4.2.1. Área de estudo 

Rio Verde localiza‑se no Sudoeste Goiano (17°47'53"S; 50°55'15"W), 

apresentando área de 8.386 km² e população estimada em 237.092 habitantes (IBGE, 

2022). A malha urbana é atravessada por rodovias de escoamento agroindustrial (BR‑060, 

BR‑452 e GO‑174), condição que eleva o volume de tráfego pesado e o potencial de 

conflitos viários. O relevo suavemente ondulado, aliado à rápida expansão urbana, gera 

vias com geometrias diversas e variação de controle de acesso, elementos relevantes para 

os sinistros de trânsito. 

 

4.2.2. Coleta e pré-processamento de dados 

A base de dados foi constituída a partir de planilha de sinistros sem vítimas, 

encaminhada pela Agência Municipal de Mobilidade e Trânsito (AMT), de Rio Verde, 

contendo 7.926 registros compreendidos entre 01 de janeiro de 2021 e 31 de dezembro 

de 2024. Cada registro apresenta número do boletim, agente responsável, solicitante, 

endereço do fato, coordenada geográfica (SIRGAS 2000) e link para o formulário 

eletrônico do boletim. O formulário, por sua vez, armazena data, hora, dados do sinistro, 

condições meteorológicas, estado da sinalização e do pavimento, imagens, relatos e 

classificação de danos veiculares. Os registros são preenchidos por agentes da AMT por 

meio de formulários eletrônicos, armazenados em banco de dados e disponibilizados 

internamente no formato HTML. Ressalta-se que esse recorte decorre da disponibilidade 

institucional: os registros de sinistros com vítimas são de responsabilidade de outros 

órgãos e não foram acessíveis para esta pesquisa. 

 

Pré‑processamento dos dados 

Conceitualmente, o pré-processamento de dados abrange rotinas de limpeza, 

padronização e integração de informações oriundas de múltiplas fontes, assegurando 

coerência semântica e espacial antes de qualquer modelagem ou inferência. Estudos de 
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referência evidenciam que falhas nessa etapa comprometem a fidedignidade dos 

indicadores de risco e a localização de hotspots: Montella (2010) demonstrou que a 

padronização de códigos viários aprimora a identificação de segmentos críticos, e Xie e 

Yan (2013) reportaram maior sensibilidade na detecção de clusters, após a harmonização 

entre bases policiais e operacionais.  

Para o pré-processamento, análise estatística e representação espacial dos dados 

neste estudo, empregou-se a linguagem Python, comumente utilizada em estudos de 

mobilidade urbana e segurança viária (Çalişkan; Anbaroğlu, 2023). As principais 

bibliotecas utilizadas foram: requests e BeautifulSoup para web scraping (automação de 

acesso e extração de conteúdo); pandas e numpy para manipulação de dados; matplotlib 

e seaborn para visualizações gráficas; math para operações matemáticas básicas; e 

geopandas, folium e contextily para manipulação e visualização de dados geográficos.  

À luz desse corpo de evidências e considerando os requisitos técnicos 

empregados, estruturou-se neste estudo um pipeline de pré-processamento composto por 

três etapas, descritas a seguir. 

• Integração dos dados: Para extrair e estruturar informações detalhadas 

que não estavam diretamente disponíveis na base principal, mas acessíveis 

por meio de formulários eletrônicos via link, foi desenvolvido um processo 

automatizado utilizando as bibliotecas pandas, requests e BeautifulSoup. 

Este processo constituiu na raspagem, acessando cada URL do boletim, 

extraindo o conteúdo em texto simples, com armazenamento em arquivos 

txt, identificados por um código único. Após, os arquivos foram lidos e 

convertidos em pares chave‑valor, que geraram dois datasets: geral dos 

sinistros e dados dos envolvidos. Por fim, foi realizada a integração para 

formato largo e a função join entre as tabelas, eliminando duplicidades e 

gerando um dataset único.  

• Transformação: O procedimento de transformação consistiu na 

adaptação e reestruturação das variáveis para adequação aos métodos de 

análise estatística e espacial. Destacam-se a formatação conjunta das 

variáveis de data e hora no padrão datetime, a extração dos valores de 

latitude e longitude a partir da coluna de coordenadas geográficas 

(convertidos para o tipo numérico apropriado) e a categorização de 

variáveis textuais recorrentes, como turno, bairro e natureza do sinistro, 

para o tipo categórico. 
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• Limpeza: Foram excluídos os registros que não continham formulário 

eletrônico associado, que apresentavam ausência de coordenadas 

geográficas ou cujas coordenadas estavam inconsistentes, (casos em que o 

ponto registrado correspondia à sede da AMT, apesar de o endereço 

informado remeter ao local real do fato). 

 

Após as etapas de integração, tratamento e limpeza, os dados resultantes foram 

submetidos a um processo de validação por verificação manual. Uma amostra de registros 

foi inspecionada e comparada com os boletins eletrônicos originais, a fim de confirmar a 

consistência das informações extraídas e armazenadas. Essa etapa visou mitigar o risco 

de distorções introduzidas pelo processamento automático e garantir a fidedignidade dos 

dados empregados nas análises subsequentes. 

Essa etapa do pré-processamento resultou em redução progressiva da base 

original, que passou de 7.926 para 6.857 registros válidos, conforme detalhado na Tabela 

4. 

 
Tabela 4 - Etapas de filtragem da base de dados. 

Etapas de filtragem da base de dados Registros 
removidos 

Total de registros 
remanescentes 

Base de dados inicial - 7.926 

Remoção de registros sem formulários 15 7.911 

Remoção de registros sem coordenadas 163 7.748 

Remoção de registros com coordenadas inconsistentes 891 6.857 
 

4.2.3. Técnicas de análise espaciotemporal 

Estimativa de Densidade por Kernel 

A Estimativa de Densidade por Kernel é reconhecida como uma das técnicas mais 

eficazes para representar padrões espaciais contínuos a partir de eventos pontuais, como 

sinistros de trânsito (Chainey; Ratcliffe, 2013; O’Sullivan; Unwin, 2003). O método 

consiste em sobrepor uma função núcleo simétrica a cada ocorrência e, em seguida, somar 

as contribuições individuais para gerar uma superfície de densidade, permitindo 

identificar hotspots em que a concentração de eventos é estatisticamente mais elevada 

(FOTHERINGHAM et al., 2000). 
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Do ponto de vista matemático, a KDE estima a densidade 𝑓"(𝑥) em cada 

localização 𝑥 conforme: 

 

𝑓"(𝑥) =
1
𝑛ℎ!*𝐾,

-|𝑥 − 𝑋"|-
ℎ 1

#

"$%

 

 

em que n é o número de observações, h o parâmetro de suavização (bandwidth), 

d a dimensão espacial, 𝐾 a função núcleo e ||𝑥	 − 	𝑋_𝑖|| a distância euclidiana entre a 

posição 𝑥 e o ponto 𝑖. Neste estudo, empregou-se o núcleo quartic pelo bom desempenho 

computacional e capacidade de suavização (SILVERMAN, 1986). 

A seleção de ℎ revela-se crítica: larguras de banda elevadas produzem superfícies 

excessivamente suavizadas que ocultam clusters locais, ao passo que valores muito 

pequenos geram ruído visual e estatístico. Métodos iterativos e de validação cruzada são 

indicados para calibrar ℎ (Xie; Yan, 2008; SHARIAT-MOHAYMANY; KHAKPOOR; 

KESHTKAR, 2013). Após testes entre 100m e 1.000m, adotou-se 800m por oferecer 

equilíbrio entre detalhamento e robustez para a malha urbana de Rio Verde. 

A seleção de ℎ é um aspecto determinante na suavização das superfícies 

estimadas. Larguras de banda mais elevadas produzem mapas excessivamente alisados, 

ocultando concentrações locais, enquanto valores muito baixos geram ruído visual e 

estatístico. Neste estudo, a estimação foi conduzida em coordenadas geográficas 

(WGS84, EPSG:4326), adotando-se um parâmetro de suavização relativo bw_method = 

0,15, que corresponde aproximadamente a 0,15° em latitude (cerca de 16–17 km). A 

escolha foi feita a partir de testes comparativos, buscando equilíbrio entre legibilidade e 

robustez das estimativas no contexto urbano analisado.  

 

Índice de Moran Global e Local (LISA) 

O índice de Moran é uma estatística empregada na análise de autocorrelação 

espacial, permitindo identificar se padrões espaciais de uma variável são aleatórios, 

agrupados ou dispersos (ANSELIN, 1995; GETIS, 2007). Na análise de sinistros de 

trânsito, sua aplicação permite verificar se as ocorrências apresentam dependência 

espacial, isto é, se há agrupamentos de áreas com taxas elevadas ou baixas de eventos 

próximos entre si (Xie; Yan, 2008; Shariatmohaymany et al., 2013). 

A versão global do índice de Moran é expressa pela fórmula: 
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𝐼 =
𝑛
𝑊 ⋅

∑ ∑ 𝑤"&(𝑥" − 𝑥̅);𝑥& − 𝑥̅<&"

∑ (𝑥" − 𝑥̅)'"
 

 

em que n representa o número de áreas, x( o valor observado na área i, x@ a média 

global, w() os pesos espaciais entre as áreas i e j, e 𝑊 a soma total dos pesos. Valores de 

I	 > 	0 indicam autocorrelação positiva (agrupamento de valores semelhantes), I	 < 	0 

indicam autocorrelação negativa (valores diferentes próximos) e I	 ≈ 0 indicam 

aleatoriedade espacial (Anselin, 1995). 

Como complemento à estatística global, os Indicadores Locais de Associação 

Espacial (LISA) permitem decompor o índice de Moran em componentes locais, 

possibilitando identificar clusters específicos, como agrupamentos de altas taxas (High-

High), baixas taxas (Low-Low) ou outliers espaciais (High-Low e Low-High). A 

estatística LISA é expressa por: 

 

𝐼" =
(𝑥" − 𝑥̅)
𝑚'

*𝑤"&;𝑥& − 𝑥̅<
&

 

 
em que I( representa o índice local para a área 𝑖, m' é a variância da variável e os 

demais termos seguem a definição anterior. Esses indicadores são representados 

graficamente por mapas de autocorrelação espacial, cuja significância é comumente 

testada por permutações aleatórias (GETIS, 2007). 

 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

O algoritmo DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise) é um método de agrupamento baseado em densidade proposto por ESTER et al. 

(1996), utilizado para identificação de clusters espaciais em contextos urbanos com dados 

ruidosos. A lógica baseia-se na formação de regiões densamente conectadas, com a 

capacidade de isolar pontos dispersos considerados ruídos. A definição dos agrupamentos 

depende de dois parâmetros principais: ε (epsilon), que representa o raio de vizinhança 

de busca, e min\_samples, que é o número mínimo de pontos exigido nesse raio para que 

um ponto seja considerado núcleo de um cluster. 

Formalmente, um ponto 𝑝 é classificado como núcleo se existir um conjunto de 

pelo menos minPts pontos 𝑞%, 𝑞', … , 𝑞*"#+,- tal que a distância entre 𝑝 e cada 𝑞" satisfaça 
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dist(p, q() ≤ ε. O agrupamento forma-se pela transitividade das conexões entre pontos 

núcleo e os vizinhos densamente conectados. Os pontos que não pertencem a nenhum 

agrupamento denso são classificados como outliers espaciais. Essa abordagem torna o 

DBSCAN robusto frente a variações de forma e densidade dos agrupamentos, sendo 

especialmente indicado para análise de dados geográficos com distribuição irregular 

(PRASANNAKUMAR et al., 2018). 

A principal aplicação em análises espaciais está na detecção de padrões agrupados 

de eventos, utilizado neste estudo permitindo isolar regiões com concentração 

significativa de ocorrências, sem impor geometrias pré-definidas aos clusters. A 

sensibilidade dos resultados à escolha dos parâmetros torna recomendável o uso de 

procedimentos exploratórios para calibração de ε e minPts, considerando a escala espacial 

do fenômeno analisado. 

 

4.3. Resultados e Discussão 

A Figura 17 apresenta a distribuição espacial dos 6.857 sinistros sem vítimas 

registrados pela AMT entre 2021 e 2024, exibida sobre dois fundos cartográficos 

distintos: um mosaico de imagens de satélite e a camada vetorial do OpenStreetMap. Em 

ambas as visualizações, os pontos concentram-se ao longo da malha arterial, com ênfase 

nos corredores BR-452/GO-174, na Avenida Presidente Vargas e nos eixos que conectam 

o centro urbano aos distritos industriais. A densidade de ocorrências decresce também à 

medida que se afastam os acessos à BR-060, confirmando a correlação entre hierarquia 

viária e risco de sinistros descrita na literatura especializada (PLUG et al., 2011; XIE; 

YAN, 2013). 
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Figura 17 - Satélite e camada vetorial - 2021 a 2024. 

 
 

A Figura 18 sintetiza a distribuição espaço-temporal dos sinistros ao longo dos 

quatro anos. Em todos os quadros persiste um núcleo de alta concentração na confluência 

dos eixos Presidente Vargas – BR-452/GO-174, indicando estabilidade do padrão 

espacial central ao longo do quadriênio. 

Três padrões destacam-se: 

• Persistência do eixo central: Em todos os quadros observa-se 

adensamento contínuo ao longo do corredor Avenida Presidente Vargas – 

BR-452/GO-174, corroborando a associação entre hierarquia viária e risco 

descrita por PLUG et al. (2011) e XIE E YAN (2013). 

• Estabilidade periférica: A baixa dispersão nos quadrantes oeste e sul 

indica que intervenções locais (alargamento de faixas, redutores) não 

alteraram substancialmente o macro-padrão espacial. 

• Oscilações discretas no quadrante nordeste: Pontos adicionais surgem 

em 2022, retraem-se em 2023 e 2024, sugerindo efeito pontual de obras 

viárias ou variação de fluxo; a inexistência de “drift” sistemático do 

centroide anual reforça a hipótese de concentração estrutural. 
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Figura 18 – Distribuição temporal 2021-2024. 

 
 

Estimativa de Densidade de Kernel (KDE) 

Para estimar a variação espaço-temporal dos mapas desta seção, aplicou-se a 

estimativa de densidade por kernel (KDE) com os seguintes parâmetros: sistema de 

referência geográfica WGS 84 (EPSG 4326); malha de interpolação regular de 500 × 500 

nós sobre o envelope municipal; núcleo gaussiano bivariado implementado em 

gaussian_kde; largura de banda fixa igual a 0,15  de ℎ de Scott, resultando em raio efetivo 

aproximado de 250–400m (Silverman, 1986); máscara espacial mediante o polígono 

oficial do perímetro urbano; e paleta contínua “INPE” (verde-amarelo-laranja-vermelho) 

para realçar gradientes de densidade. 

A inspeção conjunta dos quatro painéis da Figura 19 confirma a existência de um 

hotspot persistente, alinhado ao corredor Avenida Presidente Vargas, cujo núcleo 

vermelho se mantém em todas as superfícies. No total, foram registrados 1.642 sinistros 
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em 2021 (23,9%), 1.681 em 2022 (24,5%), 1.741 em 2023 (25,4%) e 1.793 em 2024 

(26,1%), totalizando as 6.857 ocorrências no quadriênio. Em 2021, observam-se focos 

secundários no sudoeste, próximos ao entroncamento com a GO-174, e uma mancha 

menos intensa no sudeste. Em 2022, o eixo de maior densidade desloca-se ligeiramente 

para leste-nordeste, mas sem formar um novo pico independente, sugerindo variação 

temporária de fluxo em vias adjacentes. Em 2023, o padrão volta a intensificar-se ao 

longo de toda a faixa central, recuperando a configuração de 2021 e evidenciando que as 

intervenções pontuais do ano anterior não alteraram a dinâmica estrutural de exposição. 

Já em 2024, nota-se dispersão moderada em direção ao setor norte, refletida pelo 

alargamento das zonas amarela e verde, enquanto o máximo global permanece ancorado 

no mesmo corredor central. 

 
Figura 19 – KDE anual 2021-2024. 

 
 

A inspeção da distribuição mensal da densidade permite identificar não apenas a 

estabilidade do hotspot central ao longo dos meses, mas também variações sazonais sutis 

nas áreas periféricas. Entre janeiro (493 registros; 7,2%) e abril (568; 8,3%), observa-se 

uma estrutura densa e contínua no corredor central, com ênfase na Avenida Presidente 

Vargas e adjacências. Em fevereiro (528; 7,7%) e março (622; 9,1%), a intensidade do 

núcleo nordeste aumenta ligeiramente, indicando possível elevação do fluxo urbano nesse 

setor, possivelmente associada ao calendário letivo ou atividades comerciais. Maio (631; 

9,2%) e junho (593; 8,6%) mantêm a configuração anterior, mas com dispersão mais 

acentuada para o sudoeste, sugerindo reorganização espacial do risco. Em julho (575; 

8,4%) e agosto (635; 9,3%), o hotspot central persiste, embora com redução das áreas 

vermelho-intensas, o que pode estar relacionado a queda temporária de mobilidade urbana 

no período de férias escolares (Figura 20). 

A partir de setembro (553; 8,1%), retoma-se o adensamento central, com maior 

extensão das zonas de risco elevado, visível nas manchas alaranjadas e vermelhas do setor 

central-sudoeste. Outubro (548; 8,0%) e novembro (587; 8,6%) mantêm essa estrutura, 
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apresentando maior coerência interna das áreas críticas. Em dezembro (524; 7,6%), a 

mancha de risco volta a espalhar ligeiramente para o quadrante leste, mas o núcleo denso 

permanece fixado no eixo principal, o que reforça a consistência estrutural do padrão de 

concentração de sinistros na cidade. 

 
Figura 20 – KDE mensal (acumulado 2021-2024). 

 
 

Em relação à distribuição ao longo dos dias da semana, entre segunda e sexta-

feira, observa-se um padrão concentrado e linear, fortemente ancorado no eixo principal. 

A densidade é mais pronunciada nas quartas (1.092 registros; 15,9%) e quintas-feiras 

(1.070; 15,6%), com ampliação do núcleo central e ramificações para vias secundárias 

adjacentes, sugerindo sobrecarga típica dos dias de maior atividade comercial e 

administrativa. Na segunda-feira (1.094; 16,0%), o foco desloca-se ligeiramente para o 

sudoeste, enquanto a sexta-feira (1.095; 16,0%) apresenta atenuação da densidade no 

centro e surgimento de focos laterais, o que pode refletir redistribuição de tráfego no 

encerramento da semana útil. 

Nos finais de semana, o padrão altera substancialmente. Aos sábados (880 

registros; 12,8%), a densidade permanece relativamente concentrada, mas com menor 

intensidade, enquanto aos domingos (535; 7,8%) observa-se fragmentação da mancha de 

calor, com surgimento de múltiplos subnúcleos nos quadrantes norte, leste e sul. A 
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diluição do hotspot central nesses dias aponta para uma mobilidade mais difusa, vinculada 

a deslocamentos não laborais (Figura 21). 

 
Figura 21 – KDE por dia da semana (acumulado 2021-2024). 

 
 
 

Em relação aos turnos ao longo do dia (Figura 22), o período vespertino concentra 

2.951 ocorrências (43,0%), seguido da manhã com 2.151 registros (31,4%), noite com 

1.609 (23,5%) e madrugada com 146 (2,1%). Durante a tarde, o mapa evidencia o maior 

adensamento espacial. O hotspot central expande lateralmente e atinge maior 

continuidade, cobrindo praticamente toda a extensão da Avenida Presidente Vargas e dos 

eixos transversais conectados à BR-452/GO-174. A sobreposição de fluxos escolares, 

comerciais e industriais nesse período pode explicar essa configuração. Destaca-se o 

turno da noite, em que se mantém a predominância do eixo central, mas com aumento de 

dispersão para quadrantes residenciais periféricos. A redução do volume total de registros 

nesse período é compensada por uma fragmentação do risco. Já na madrugada, observa-

se um padrão pontual e concentrado: embora represente apenas 2,1% dos sinistros no 

total, há um foco denso no quadrante nordeste do centro expandido. 
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Figura 22 – KDE por turno (acumulado 2021-2024). 

 
 

Quando se observa a natureza (Figura 23), a distribuição é apresentada da seguinte 

forma: colisão (3.062 registros; 44,7%), abalroamento (2.616; 38,2%), choque em objeto 

fixo (953; 13,9%), outro (160; 2,3%), atropelamento (44; 0,6%), tombamento (11; 0,2%), 

capotamento (7; 0,1%) e atropelamento de animal (4; 0,1%). Colisão e abalroamento, as 

naturezas mais frequentes, apresentam manchas densas e contínuas centradas na Avenida 

Presidente Vargas e seus prolongamentos. Os padrões são semelhantes, com maior 

alongamento no sentido leste-oeste no caso dos abalroamentos. O grupo choque em 

objeto fixo exibe uma distribuição mais pulverizada, com manchas intensas em pontos 

pontuais do quadrante norte e nas extremidades dos eixos viários. Esse padrão é 

compatível com trechos de aceleração ou saída de perímetro urbano, nos quais a perda de 

controle veicular é mais provável. 

 
Figura 23 – KDE por natureza (acumulado 2021-2024). 

 
 

A Figura 24 apresenta a distribuição espaço-temporal das três naturezas de sinistro 

mais frequentes: colisão, abalroamento e choque em objeto fixo. As colisões mantêm 

padrão estável ao longo de todo o período, com hotspot bem definido no eixo central. Em 

termos quantitativos, foram registrados 713 casos em 2021 (23,3%), 736 em 2022 

(24,0%), 787 em 2023 (25,7%) e 826 em 2024 (27,0%), demonstrando aumento 

progressivo e persistência estrutural do risco, independentemente de intervenções 

pontuais. Nos mapas de abalroamento, observa-se maior dispersão espacial, 
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especialmente em 2022 e 2024, que concentraram 640 (24,5%) e 685 (26,2%) registros, 

respectivamente. Essa natureza parece responder com maior sensibilidade a alterações 

locais na malha viária, nos padrões de fluxo ou na ocupação do solo. Ainda assim, o 

núcleo central permanece presente em todos os anos, reforçando a recorrência em áreas 

de maior complexidade geométrica. 

Já os choques em objeto fixo exibem padrão mais fragmentado e instável, com 

múltiplos focos dispersos em bordas do perímetro urbano. Foram contabilizados 218 

registros em 2021 (22,9%), 265 em 2022 (27,8%), 245 em 2023 (25,7%) e 225 em 2024 

(23,6%), mantendo variações discretas ano a ano. Em 2021 e 2022, esses eventos 

distribuem-se amplamente, mas a partir de 2023 nota-se consolidação de núcleos no 

quadrante nordeste, sugerindo associação com zonas de expansão urbana ou trechos 

viários menos regulados. A comparação entre as três naturezas evidencia distintas 

dinâmicas territoriais e reforça a necessidade de estratégias específicas de prevenção para 

cada tipo de ocorrência. 

 
Figura 24 – KDE por natureza (evolução temporal). 

 
 

Quando observado os testes de alcoolemia, a Figura 25 apresenta a evolução 

espaço-temporal dos sinistros segundo a situação do exame de alcoolemia entre 2021 e 



 
 

 
 

65 

2024, considerando as três categorias registradas: “não realizado” (12.333 ocorrências), 

“realizado no local” (816) e “recusado pelo motorista” (18). A categoria predominante, 

“não realizado”, mantém padrão denso e contínuo ao longo de todo o período, com 

concentração persistente no eixo central e nas principais vias arteriais, refletindo o 

comportamento geral da distribuição dos sinistros no município. Nos casos em que o 

exame foi “realizado no local”, observa-se distribuição mais dispersa e com menor 

intensidade. Segundo relato de representantes da AMT, a partir de 2022 foi adotado o 

protocolo de que todo sinistro ocorrido após as 18h deve ser acompanhado da realização 

de exame de alcoolemia no local, o que pode explicar o aumento e a difusão espacial 

desse tipo de registro nos anos seguintes. A categoria “recusado pelo motorista” apresenta 

manchas pontuais e isoladas, distribuídas de forma fragmentada entre 2022 e 2024.  

 
Figura 25 – KDE por exame de alcoolemia (evolução temporal). 

 
 

Indice de Moran Global (I) e Local (LISA) 

A autocorrelação espacial global foi estimada a partir de uma malha hexagonal 

regular de 250 m, agregando a contagem de sinistros por célula.  
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A definição dessa dimensão baseou-se em testes exploratórios com diferentes 

larguras, variando de 100 m a 500 m, avaliando-se o impacto sobre a estabilidade dos 

indicadores e a identificação de aglomerados. O valor de 250 m demonstrou ser mais 

adequado ao contexto urbano de Rio Verde por equilibrar detalhamento espacial e 

robustez estatística, evitando tanto a fragmentação excessiva quanto a diluição de padrões 

locais relevantes. A matriz de vizinhança utilizada foi de contiguidade de primeira ordem 

(queen), com pesos binários padronizados por linha, atribuindo peso zero às unidades sem 

vizinhos (“ilhas”). A significância dos resultados foi verificada por meio de 999 

permutações de Monte Carlo, assegurando a detecção de estruturas espaciais consistentes 

e compatíveis com a escala operacional de planejamento urbano e fiscalização no 

município. 

O resultado obtido foi I = 0,5897 com p = 0,001, rejeitando a hipótese nula de 

ausência de autocorrelação espacial ao nível de 5%. O valor positivo e elevado indica 

agrupamento de áreas com altas e baixas frequências de sinistros em posições adjacentes, 

evidenciando dependência espacial na distribuição dos eventos. A existência de 48 células 

“ilha” reduziu marginalmente o valor de I, mas não comprometeu a robustez do achado. 

Considerando a significância da autocorrelação global, procedeu-se à 

decomposição local por meio do indicador LISA, a fim de identificar a localização 

específica dos agrupamentos de sinistros. Essa análise complementa o valor agregado do 

índice global e permite distinguir áreas críticas e zonas de segurança relativa dentro do 

tecido urbano. A Tabela 2 apresenta a descrição técnica dos clusters espaciais 

identificados pelo LISA, classificando-os em Alto-Alto, Baixo-Baixo, Alto-Baixo e 

Baixo-Alto. Esses agrupamentos representam, respectivamente, áreas críticas de risco, 

zonas de segurança relativa, pontos atípicos e locais protegidos em zonas de risco. 

Os resultados obtidos confirmam que os sinistros ocorrem em corredores viários 

específicos, coerente com estudos que revelam comportamento semelhante em cidades 

de porte médio (Plug, Xia e Caulfield, 2011; Shafabakhsh, Famili e Bahadori, 2017). A 

dependência espacial global justifica a aplicação de indicadores locais de associação 

(LISA) para detalhar a localização dos clusters e apoiar intervenções orientadas pela 

evidência, conforme recomendado por ANSELIN (1995) e GETIS (2007). 

A Figura 26 apresenta os resultados da decomposição local (LISA), que 

evidenciou predominância de clusters Alto-Alto no núcleo urbano central , notadamente 

ao longo dos principais corredores arteriais, e de clusters Baixo-Baixo em bairros 

periféricos e área rural. Outliers Alto-Baixo e Baixo-Alto ocorreram pontualmente em 
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interseções isoladas, enquanto extensas porções da malha foram classificadas como não 

significativas (p > 0,05), refletindo baixa densidade ou padrão aleatório de sinistros. 

 
Tabela 5 - Descrição dos Clusters Espaciais com Base na Autocorrelação Local. 

Cor Tipo de Cluster Significado técnico 

Vermelho Alto-Alto (HH) Hotspots: hexágonos com alta contagem de sinistros, cercados por 
outros com alta contagem. São áreas críticas de risco. 

Azul Baixo-Baixo (LL) Coldspots: hexágonos com baixa contagem de sinistros, cercados 
por outros com baixa contagem. Indicadores de segurança relativa. 

Laranja Alto-Baixo (HL) 
Outlier negativo: um hexágono com alta contagem, mas cercado por 

baixa contagem. Pode indicar um ponto atípico, como um 
cruzamento perigoso isolado. 

Verde claro Baixo-Alto (LH) 
Outlier positivo: hexágono com baixa contagem, mas cercado por 

alta contagem. Pode representar um local protegido em uma zona de 
risco. 

Cinza claro Não significativo 
Áreas em que não foi detectada autocorrelação significativa (p > 

0,05). O padrão de sinistros podem ser aleatório ou insuficiente para 
inferência estatística. 

 

Esses resultados reforçam a necessidade de intervenções diferenciadas: ações 

estruturais nas zonas Alto-Alto para mitigação do risco, monitoramento contínuo dos 

outliers para detecção de mudanças emergentes e abordagem preventiva nas áreas Baixo-

Baixo para preservação das condições de segurança observadas. 

 
Figura 26 – Clusters (LISA - Moran Local) acompanhados da distribuição espacial dos pontos de sinistros 
2021-2024. 

 
 

A análise dos indicadores locais de associação espacial (LISA) ao longo dos anos 

de 2021 a 2024 revela a persistência de um padrão consolidado de autocorrelação espacial 
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positiva na região central de Rio Verde. Em todos os anos, observa-se a recorrência de 

agrupamentos classificados como Alto-Alto (HH) ao longo do principal eixo viário leste-

oeste, notadamente sobre a Avenida Presidente Vargas e suas extensões. Esses clusters 

significativos mantêm disposição linear, conectando setores centrais e bairros com 

elevada densidade de tráfego. 

A Figura 27 apresenta a evolução temporal dos clusters LISA entre 2021 e 2024, 

evidenciando a persistência de autocorrelação positiva na região central de Rio Verde.A 

comparação das quatro séries temporais indica que, embora haja variações na magnitude 

e na dispersão dos eventos, a estrutura espacial do risco viário permanece relativamente 

estável no núcleo urbano. Esse padrão é reforçado pelo surgimento consistente de células 

HH nos mesmos trechos ao longo dos anos, o que reforça a tese de que determinadas 

áreas da cidade concentram condições crônicas de risco, associadas à configuração 

geométrica da via, intensidade de tráfego, e ausência de intervenções estruturais de 

segurança. 

Em contrapartida, nas zonas periféricas verifica-se aumento da quantidade de 

células classificadas como “ilhas” especialmente a partir de 2022. Esse fenômeno sugere 

expansão do tecido urbano para regiões com pouca ou nenhuma ocorrência registrada. 

 
Figura 27 – Evolução temporal dos clusters (LISA - Moran Local) acompanhados da distribuição espacial 

dos pontos de sinistros. 

 

 

 
 

Esses achados apontam para a existência de uma estrutura espacial recorrente de 

risco no município, que tende a se concentrar em regiões de maior complexidade viária e 
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atividade urbana consolidada. A persistência dos clusters Alto-Alto nos mesmos setores 

ao longo dos quatro anos reforça a necessidade de intervenções focalizadas, ancoradas 

em evidências empíricas, especialmente nas zonas centrais de convergência modal e 

tráfego misto. 

As estimativas de densidade kernel e a análise LISA convergem ao evidenciar a 

concentração de sinistros na Avenida Presidente Vargas. Em virtude dessa recorrência, a 

investigação foi refinada para a escala de segmento, abrangendo os 7,23 km da via. Esse 

recorte isolou 353 sinistros depurados (2021-2024) e possibilitou avaliar a distribuição 

linear dos eventos. 

 

Análise da Avenida Presidente Vargas 

A Avenida Presidente Vargas é a espinha dorsal da mobilidade urbana em Rio 

Verde. Possui extensão de aproximadamente 7,23 km, ligando o bairro Santo Antônio de 

Lisboa ao entroncamento com as rodovias BR-060 e GO-174 (IBGE, 2020). A via é 

classificada como arterial, cuja função principal é permitir maior fluidez no fluxo de 

veículos, com velocidade máxima regulamentada de 50 km/h (PREFEITURA 

MUNICIPAL DE RIO VERDE, 2023). 

Para extrair apenas os pontos de sinistro que permeiam esta avenida, aplicou-se 

uma expressão regular para extrair latitude e longitude, gerando um GeoDataFrame no 

sistema WGS 84 (EPSG 4326). Em seguida, os dados foram reprojetados para a projeção 

Web Mercator (EPSG 3857), compatível com mosaicos cartográficos on-line e 

recomendada para visualizações web. 

Para excluir registros indevidamente georreferenciados, primeiramente definiu-se 

um retângulo de recorte que acompanhava o traçado aproximado da via. Esse bounding 

box cobriu uma faixa média de 120 m ao redor da avenida, eliminando pontos distantes 

do eixo. Reconhecendo, todavia, que a delimitação retangular poderia manter ruídos, 

aplicou-se o algoritmo DBSCAN, empregado para detecção de agrupamentos de 

densidade e remoção de outliers espaciais (ESTER et al., 1996). A parametrização 

adotada (ε = 250 m e min\_samples = 12) preservou o cluster predominante e descartou 

agrupamentos residuais. 

Depois da fase de densidade, construiu-se uma linha central da avenida a partir de 

quatro vértices ao longo do eixo, convertendo-a em um envelope de 50 m por meio de 

operação buffer. Apenas os pontos contidos nesse polígono foram retidos, garantindo 
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correspondência topológica com o logradouro e corrigindo os registros cujas coordenadas 

divergiam do endereço textual.  

A aplicação combinada dos filtros geográficos, do algoritmo DBSCAN e do buffer 

linear resultou em um subconjunto de 353 sinistros entre 2021 e 2024. A composição por 

natureza é apresentada na Tabela 6.  

 
Tabela 6 - Registros na Avenida P. Vargas por natureza. 

Natureza 2021 2022 2023 2024 Total 
Colisão 63 39 51 65 218 
Abalroamento 23 20 19 33 95 
Choque em objeto fixo 9 4 7 7 27 
Outro 0 1 3 5 9 
Atropelamento 1 0 0 2 3 
Atropelamento animal 0 0 1 0 1 

Total 96 64 81 112 353 
 

Para representação cartográfica, geraram duas visualizações. No mapa de calor, 

(Figura 28) estimou a densidade espacial por KDE com largura de banda de 150m 

(SILVERMAN, 1986). A matriz resultante evidencia gradientes de densidade ao longo 

da via, evidenciando pontos críticos ao longo dos 7,23 km analisados. Os sinistros 

classificados na categoria outros foram removidos da análise visual. 

 
Figura 28 - Mapa de calor - Avenida Presidente Vargas (2021 -2024) 
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Complementarmente, o mapa de pontos confirmou a linearidade da distribuição 

dos 353 sinistros georreferenciados, após o processo de depuração espacial. Os pontos 

alinhados ao longo do eixo demonstram aderência ao buffer linear de 50 m estabelecido. 

 
Figura 29 - Sinistros na Avenida Presidente Vargas (2021 -2024) por natureza. 
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A classificação dos veículos envolvidos nos 353 sinistros registrados na Avenida 

Presidente Vargas entre 2021 e 2024 foi organizada em cinco grandes categorias: veículos 

leves, veículos de duas rodas, caminhão, transporte coletivo e outros. Esse agrupamento 

considerou todos os veículos envolvidos, uma vez que cada sinistro pode envolver 

múltiplos veículos, totalizando 716 veículos envolvidos. 

A categoria veículos leves, que inclui automóveis, camionetas, caminhonetes e 

utilitários, concentrou 606 registros (85%), correspondendo à ampla maioria dos veículos 

envolvidos. A segunda classe com maior incidência foi a de veículos de duas rodas, que 

abrange motocicletas, motonetas, ciclomotores e bicicletas, totalizando 43 ocorrências 

(6%). A classe caminhão aparece em 30 registros (4%), seguido do grupo transporte 

coletivo (ônibus e micro-ônibus) com 24 registros (3%) e outros, composta por tipos 

residuais com 13 registros (2%). 

A representação espacial por classe de veículo é evidenciada na Figura 30, que 

reforça os padrões descritos, revelando que, embora os veículos leves estejam presentes 

ao longo de toda a avenida, os veículos pesados e coletivos concentram-se com maior 

densidade nos extremos, próximos às conexões com rodovias e nos polos de maior 

movimento urbano.  

 
Figura 30 - Sinistros na Avenida Presidente Vargas (2021 -2024) por tipo de veículo. 
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4.4. Conclusão 

Este estudo analisou a evolução temporal e a configuração espacial dos 6.857 

sinistros de trânsito sem vítimas registrados em Rio Verde (GO) entre 2021 e 2024, 

utilizando estimativas de densidade por kernel (KDE), índices de autocorrelação espacial 

(Moran Global e LISA) e o algoritmo DBSCAN para segmentação linear. 

A estimativa de densidade por kernel evidenciou persistente aglomeração de 

ocorrências no corredor formado pela Avenida Presidente Vargas e pelas rodovias BR-

452/GO-174, padrão que se manteve estável ao longo do quadriênio e foi reforçado pela 

presença de gradientes de densidade decrescente nas zonas periféricas do município. 

A análise de autocorrelação espacial indicou dependência positiva significativa (I 

= 0,5897; p = 0,001), consolidando a existência de clusters estatisticamente consistentes. 

A decomposição local (LISA) permitiu identificar células Alto-Alto coincidentes com a 

malha arterial central e, sobretudo, com a Avenida Presidente Vargas, evidenciando 

hotspots crônicos em trechos de elevada complexidade viária. Para esse eixo, o uso 

combinado de filtros geográficos e DBSCAN selecionou 353 sinistros distribuídos 

linearmente ao longo de 7,23 km, confirmando a adequação do método para recortes de 

segmento viário. 

Os achados possuem implicações diretas para a agenda local de segurança viária. 

A concentração recorrente de sinistros nos principais corredores urbanos corrobora a 

literatura especializada, que indica que vias com maior hierarquia funcional, como 

arteriais e rodovias urbanas, tendem a concentrar maior volume de tráfego e velocidades 

operacionais mais altas, fatores associados ao aumento da frequência e da gravidade dos 

sinistros (PLUG et al., 2011; XIE; YAN, 2013). 

Nesse contexto, evidencia-se a necessidade de intervenções de engenharia em 

cruzamentos críticos, gestão de velocidade e fiscalização focada em veículos leves, 

responsáveis por 85% dos registros na Avenida Presidente Vargas. Tais ações convergem 

com as metas do PNATRANS e da Década 2021-2030, que preconizam reduções 

graduais de mortes e lesões por meio de infraestrutura segura, fiscalização e educação. 

Limitações importantes devem ser reconhecidas. A base analisada restringe-se a 

sinistros sem vítimas registrados pela AMT, podendo subestimar lesões ou óbitos não 

reportados. Adicionalmente, o processo de pré-processamento resultou na exclusão de 

aproximadamente 11% dos registros originais, após etapas de pré-processamento e 
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limpeza. Embora tais etapas tenham sido necessárias para assegurar a qualidade e a 

consistência das análises, esse descarte pode acentuar a subnotificação já existente nos 

sistemas oficiais de registro e, consequentemente, introduzir discrepâncias entre os 

resultados obtidos e o cenário real. Por fim, inconsistências residuais de 

georreferenciamento também podem influenciar a precisão espacial, ainda que os 

procedimentos de limpeza e depuração empregados tenham mitigado esse risco. 

Recomenda-se, como continuidade, incorporar sinistros com vítimas e dados de 

velocidade média veicular, ampliar a série histórica para aferir tendências pós-2024 e 

aplicar modelos preditivos que considerem intervenções planejadas. Ademais, a adoção 

de painéis geoespaciais dinâmicos pela gestão municipal poderá viabilizar 

monitoramento em tempo quase real, potencializando decisões baseadas em evidências e 

contribuindo para que Rio Verde avance rumo às metas de redução de sinistros 

estabelecidas em âmbito nacional e internacional. 
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RESUMO 
 
Este estudo avaliou a viabilidade de construir modelos preditivos confiáveis para sinistros 
de trânsito registrados em Rio Verde-GO entre 2021 e 2023, empregando um processo 
rigoroso de detecção e correção de data leakage. A base inicial continha 4.601 
ocorrências e 18 variáveis, com aumento para 44 variáveis com tratamento inicial; após 
a eliminação de 26 atributos comprometidos por vazamento de dados, restaram 18 
preditores legitimamente disponíveis no momento da decisão. Aplicaram-se técnicas de 
engenharia de atributos, balanceamento de classes e validação cruzada estratificada (3-
fold) resultando em 11 modelos supervisionados considerados confiáveis, 
complementados por análises não supervisionadas que identificaram cinco perfis distintos 
de sinistros. As métricas de desempenho dos modelos confiáveis variaram de 67,8% a 
96,7% de acurácia ou R², destacando-se predições robustas para condições da via (seca 
ou molhada) e combinações de período do dia com finais de semana. A análise de 
importância de variáveis apontou predominância de fatores geográficos, sazonais e de 
infraestrutura sobre marcadores estritamente temporais. Além disso, o agrupamento não 
supervisionado por K-Means identificou cinco perfis distintos de sinistros, sendo o cluster 
vespertino responsável por 34,7% das ocorrências. Os resultados confirmam que o 
controle sistemático de data leakage é determinante para a generalização dos modelos e 
demonstram o potencial do aprendizado de máquina como ferramenta de apoio às 
políticas de segurança viária em municípios de porte médio. 

 

Palavras-chave: sinistros de trânsito; aprendizado de máquina; data leakage; modelagem 
preditiva; Rio Verde-GO. 

 

 
ABSTRACT 
 
This study assessed the feasibility of constructing reliable predictive models for traffic 
crashes recorded in Rio Verde-GO between 2021 and 2023, employing a rigorous process 
for detecting and correcting data leakage. The original dataset contained 4,601 records 
and 18 variables, later expanded to 44 variables after initial processing; following the 
exclusion of 26 attributes compromised by leakage, 18 predictors legitimately available 
at the decision-making moment were retained. Feature engineering, class balancing, and 
stratified 3-fold cross-validation techniques were applied, resulting in 11 supervised 
models considered reliable, complemented by unsupervised analyses that identified five 
distinct accident profiles. The performance metrics of the reliable models ranged from 
67.8% to 96.7% accuracy or R², with robust predictions observed for road surface 
conditions (dry or wet) and combinations of time of day and weekends. Variable 
importance analysis indicated a predominance of geographic, seasonal, and 
infrastructure-related factors over strictly temporal markers. Furthermore, unsupervised 
clustering via K-Means identified five distinct accident profiles, with the afternoon cluster 
accounting for 34.7% of all incidents. The results confirm that systematic control of data 
leakage is critical to ensuring model generalization and demonstrate the potential of 
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machine learning as a decision-support tool for traffic safety policies in medium-sized 
cities. 

 

Key words: traffic crashes; machine learning; data leakage; predictive modeling; Rio 
Verde-GO. 
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5.1. Introdução 

A análise preditiva de sinistros de trânsito tornou-se instrumento estratégico para 

a gestão da segurança viária e o planejamento urbano, permitindo antecipar cenários de 

risco, otimizar a alocação de recursos de emergência e fundamentar políticas públicas 

baseadas em evidências. O crescimento do tráfego motorizado em centros de porte médio, 

como Rio Verde, GO, reforça a demanda por métodos que descrevam padrões de 

ocorrência e subsidiem intervenções pontuais em vias e bairros críticos. 

Nesse contexto, o aprendizado de máquina oferece um conjunto de técnicas 

capazes de ajustar funções preditivas diretamente a partir dos dados, reduzindo a 

imposição de pressupostos paramétricos característicos da estatística clássica (JORDAN; 

MITCHELL, 2015). Algoritmos supervisionados, como Random Forest, Extra Trees, 

Regressão Logística, Naive Bayes, XGBoost e LightGBM, já demonstraram utilidade na 

classificação de gravidade e na estimativa de condições adversas, enquanto abordagens 

não supervisionadas permitem identificar estruturas latentes úteis à segmentação de perfis 

de risco. 

A construção de modelos confiáveis, entretanto, enfrenta o desafio recorrente do 

data leakage, fenômeno em que variáveis indisponíveis no momento da decisão são 

inadvertidamente incorporadas ao treinamento, produzindo métricas infladas e modelos 

inviáveis em produção (KAUFMAN et al., 2012; KAPOOR; NARAYANAN, 2023). Em 

bases de dados de sinistros de trânsito, o vazamento manifesta-se principalmente por 

atributos temporais diretos ou derivados, estados sazonais e identificadores de alta 

cardinalidade que possibilitam memorizar casos específicos em vez de aprender padrões 

generalizáveis. A literatura indica que tais formas sutis de vazamento permanecem 

subdetectadas em muitos estudos aplicados, comprometendo a validade externa dos 

resultados. 

Apesar da pertinência dessa discussão, são escassas as investigações empíricas 

que combinem detecção sistemática de data leakage com a avaliação de modelos de 

aprendizado de máquina alimentados exclusivamente por variáveis legítimas em cenários 

locais. O conjunto de 4.601 registros de sinistros ocorridos em Rio Verde entre 2021 e 

2023 oferece oportunidade ímpar para examinar, de forma controlada, a influência desse 

problema metodológico sobre a capacidade preditiva dos modelos. 
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Dessa forma, o presente estudo tem por objetivo avaliar a viabilidade de 

desenvolver modelos preditivos confiáveis para sinistros de trânsito em Rio Verde, GO, 

ocorridos entre 2021 e 2023, mediante a aplicação de uma metodologia de detecção e 

correção de data leakage, garantindo que apenas variáveis legitimamente disponíveis no 

momento da decisão integrem o processo de aprendizado. 

 

5.2. Material e Método 

5.2.1. Coleta e pré-processamento de dados 

A base de dados foi constituída a partir de planilha contendo informações sobre 

sinistros sem vítimas, encaminhada pela Agência Municipal de Mobilidade e Trânsito 

(AMT), de Rio Verde, - GO, com 4.601 registros compreendidos entre 01 de janeiro de 

2021 e 31 de dezembro de 2023. Os registros contemplam dados sobre o momento do 

sinistro, como dia da semana e período do dia; dados sobre o local, incluindo bairro, tipo 

de via e condições climáticas; e dados sobre os condutores e veículos, como categoria da 

CNH, teste de alcoolemia, quantidade de veículos envolvidos e tipo de avarias 

constatadas. 

O pré-processamento dos dados foi realizado no intuito de garantir a consistência 

estrutural e a viabilidade analítica do conjunto de registros de sinistros. O dataset original 

(Quadro 2), composto por 18 variáveis, apresentava inconsistências como dados ausentes 

e tipos de dados mistos. Além disso, apresentava características que impunham desafios 

à modelagem, como o desbalanceamento entre categorias e a presença de variáveis com 

alta cardinalidade. 

 
Quadro 2 - Base de dados original. 

Variável Descrição 
Dia Semana Dia da semana em que ocorreu o sinistro 

Período Período do dia em que ocorreu o sinistro 
Zona Classificação da zona em que ocorreu o sinistro 

Natureza Tipo de sinistro ocorrido 
Bairro Nome do bairro em que ocorreu o sinistro 

Controle Tráfego Indicação de tráfego no local 
Pista Descrição das características da pista em que ocorreu o sinistro 
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Pavimento Tipo de pavimento da via 
Condições da via Descrição da via em que ocorreu o sinistro 

Condições do tempo Condições climáticas no momento do sinistro 
Mês Mês em que ocorreu o sinistro 
Ano Ano em que ocorreu o sinistro 

Habilitação Situação de habilitação do condutor envolvido 
Categoria Categoria da CNH do condutor 

Teste Álcool Realização do exame toxicológico 
Valor (Mg/L) Valor do exame toxicológico 

Veículos Envolvidos Tipo de veículo do(s) envolvido(s) 
Avarias Classificação do dano/avaria nos veículos 

 

A variável “HORA”, por exemplo, exigiu correção de heterogeneidade nos 

formatos, assegurando extração do período do dia, sendo um procedimento essencial para 

análises temporais subsequentes. Além disso, variáveis demográficas como “IDADE” 

foram categorizadas em faixas etárias, conforme recomendações da literatura 

especializada (McCartt et al., 2009), permitindo maior sensibilidade na detecção de 

padrões epidemiológicos. O tratamento resultou em adição de 26 variáveis (Quadro 3) 

ampliando a base de dados para 44 variáveis, após esta transformação. 

 
Quadro 3 – Variáveis adicionadas. 

Variável Descrição 
hora_numerica  Hora do dia em formato numérico (0 a 23)  

periodo_detalhado  Período detalhado do dia (madrugada, manhã, tarde, noite)  
horario_pico  Indicador binário de ocorrência em horário de pico (Sim/Não)  

hora_sin  Transformação cíclica da hora: seno(2π·hora/24)  
hora_cos  Transformação cíclica da hora: cosseno(2π·hora/24)  

faixa_etaria  Faixa etária do envolvido (18-25, 26-35, 36-50, 51-65, 65+)  
ano  Ano do sinistro em formato numérico (2021, 2022, 2023)  
mes  Mês do sinistro em formato numérico (1 a 12)  

dia_semana  Dia da semana em formato numérico (0–6, sendo domingo=0)  
dia_mes  Dia do mês em que ocorreu o sinistro (1 a 31)  

semana_ano  Número da semana no ano  
eh_feriado  Indicador binário de feriado (0 = não feriado, 1 = feriado)  

eh_fim_semana  Indicador binário para fim de semana (0 = não, 1 = sim)  
eh_inicio_mes  Indicador binário para início de mês (0 = não, 1 = sim)  
eh_fim_mes  Indicador binário para final de mês (0 = não, 1 = sim)  

trimestre  Trimestre do ano (1 a 4)  
estacao  Estação do ano correspondente à data (Verão, Outono, Inverno, Primavera)  
mes_sin  Transformação cíclica do mês: seno(2π·mês/12)  
mes_cos  Transformação cíclica do mês: cosseno(2π·mês/12)  

dia_semana_sin  Transformação cíclica do dia da semana: seno(2π·dia/7)  
dia_semana_cos  Transformação cíclica do dia da semana: cosseno(2π·dia/7)  
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zona_periodo  Variável de interação Zona × Período (ex.: Urbana_Matutino)  
condicoes_via  Condição da via padronizada (bom_asfalto, chuva_asfalto, etc.)  

periodo_fds  Interação entre período do dia e fim de semana (ex.: manhãa_fds, 
noite_semana). 

pico_fds  Interação entre pico e fim de semana (ex.: pico_fds, normal_semana)  
estacao_periodo  Interação entre estação do ano e período do dia (ex.: verao_manha).        

 
Outro desafio metodológico consistiu no desbalanceamento nas categorias de 

natureza dos sinistros, comprometendo a robustez estatística para tarefas de classificação. 

As categorias com frequência inferior a 1% foram consolidadas em grupos mais amplos 

(Fernández et al., 2018) com base na gravidade e no mecanismo de lesão. 

Adicionalmente, a variável “bairro”, com 247 categorias únicas, foi simplificada por meio 

da retenção dos 25 bairros mais incidentes, responsáveis por 68% dos casos. Os demais 

foram agrupados como “outros_bairros”, estratégia que preserva 85% da informação 

discriminativa e segue o princípio de Pareto aplicado à distribuição espacial (Micci-

Barreca, 2001; Newman, 2005). 

A engenharia de variáveis foi implementada de forma a capturar dimensões 

temporais e contextuais mais refinadas. Foram extraídas informações como período do 

dia, horários de pico, dia da semana, mês, trimestre e estações do ano, além de indicadores 

binários de datas específicas. Para contemplar a natureza cíclica do tempo, 

transformações trigonométricas foram aplicadas às variáveis temporais. Adicionalmente, 

foram criadas também variáveis de interação, tais como “zona_periodo”, para representar 

sinergias entre fatores espaciais e temporais. A etapa final consistiu na padronização dos 

tipos de dados, no tratamento direcionado de valores ausentes e na validação cruzada da 

coerência entre variáveis.  

 

5.2.2. Machine Learning 

O aprendizado de máquina compreende um conjunto de técnicas estatísticas que 

extraem padrões de bases de dados para produzir inferências e previsões automatizadas. 

Diferente da modelagem estatística clássica, na qual a estrutura funcional é imposta a 

priori, os algoritmos de aprendizado de máquina ajustam parâmetros diretamente a partir 

dos dados, reduzindo suposições paramétricas (Jordan; Mitchell, 2015). Essa abordagem 

alcança duas tarefas essenciais na análise de sinistros de trânsito: (i) reconhecimento de 

estruturas latentes, sendo útil na identificação de perfis de risco, e (ii) estimação de 
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funções preditivas para variáveis categóricas ou contínuas. A literatura consolida o campo 

em paradigmas supervisionado e não supervisionado, cada qual associado a hipóteses 

distintas sobre a disponibilidade de rótulos nos dados (Bishop, 2006). 

 

Algoritmos não supervisionados 

O aprendizado não supervisionado parte do pressuposto de que não existem 

rótulos pré-definidos e, portanto, o objetivo é revelar estruturas latentes nos dados. Nos 

problemas de agrupamento, as observações são particionadas segundo critérios de 

similaridade: o K-Means minimiza a soma das dispersões intraclasse ao redor de 

centroides (MACQUEEN, 1967); o DBSCAN identifica regiões de alta densidade, admite 

formatos de cluster arbitrários e reconhece ruídos (ESTER et al., 1996); os métodos 

hierárquicos, a exemplo da ligação de Ward, geram dendrogramas que descrevem 

relações de proximidade em múltiplas escalas (WARD, 1963). Para redução de 

dimensionalidade, a Análise de Componentes Principais transforma variáveis 

correlacionadas em eixos ortogonais que retêm a maior proporção de variância explicada 

(JOLLIFFE, 2002). Na detecção de anomalias, o Isolation Forest aplica o princípio de 

aleatoriedade florestal para isolar instâncias em menor número de divisões, 

caracterizando pontos atípicos (LIU; TING; ZHOU, 2008). Tais procedimentos 

possibilitam segmentar vias com padrões homogêneos de sinistros, revelar zonas críticas 

e investigar outliers espaço-temporais sem recorrer a variáveis-alvo. 

 

Algoritmos supervisionados 

No aprendizado supervisionado, parte-se de amostras rotuladas para estimar 

funções que mapeiam atributos explanatórios em respostas categóricas ou contínuas. O 

algoritmo Random Forest, por exemplo, constrói múltiplas árvores de decisão sobre 

subconjuntos de dados e atributos, agregando previsões para reduzir variância 

(BREIMAN, 2001). O algoritmo Extra Trees estende essa ideia ao introduzir divisão 

totalmente aleatória dos pontos de corte, diminuindo correlação entre árvores e 

acelerando o ajuste (GEURTS; ERNST; WEHENKEL, 2006). A Regressão Logística, 

enquadrada nos modelos lineares generalizados, estima a probabilidade de cada classe 

por meio da função logística e serve de base para análise de riscos por ser interpretável 

em termos de odds ratio (HOSMER; LEMESHOW; STURDIVANT, 2013). O algoritmo 

Naive Bayes, fundamentado no teorema de Bayes e na suposição de independência 

condicional entre preditores, oferece classificação rápida, especialmente útil em cenários 
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de alta dimensionalidade (MURPHY, 2012). Já os métodos de gradiente reforçado 

avançaram com o XGBoost, que integra regularização e estimação de segundas derivadas 

para otimização eficiente (CHEN; GUESTRIN, 2016), e com o LightGBM, que adota 

partições por histogramas e crescimento folha-a-folha para lidar com grandes volumes de 

dados de maneira escalável (KE et al., 2017). No contexto de sinistros de trânsito, esses 

algoritmos permitem classificar períodos críticos, prever gravidade e quantificar 

incertezas prognósticas com validação cruzada estratificada. 

 

Data Leakage 

Data leakage, ou vazamento de dados, constitui-se um dos problemas mais 

críticos em aprendizado de máquina, ocorrendo quando informações que não estariam 

disponíveis no momento da predição em um cenário real são inadvertidamente incluídas 

durante o treinamento do modelo. Este fenômeno resulta em modelos com performance 

artificialmente inflada durante a validação, mas que falham completamente quando 

aplicados a dados prospectivos em ambiente de produção. 

O problema de data leakage é particularmente prevalente em aplicações de análise 

temporal e estudos observacionais, em que a distinção entre informação preditiva legítima 

e vazamento de informação futura pode ser sutil. Conforme documentado por 

KAUFMAN et al. (2012) e KAPOOR & NARAYANAN (2023), uma proporção 

significativa de estudos em aprendizado de máquina aplicado pode estar comprometida 

por formas não detectadas de vazamento de dados, resultando em conclusões científicas 

e aplicações práticas fundamentalmente falhas. 

O vazamento de dados pode manifestar-se de diversas formas: através da inclusão 

de variáveis que são consequência direta do evento que se pretende prever, da utilização 

de informações futuras para prever eventos passados, da incorporação de identificadores 

únicos que permitem ao modelo memorizar casos específicos ao invés de aprender 

padrões generalizáveis, ou através de proxies que indiretamente contêm a informação que 

se pretende prever. 

No contexto deste estudo, as técnicas supervisionadas foram aplicadas às tarefas 

de classificação e regressão relacionadas a variáveis de interesse operacional, como 

gravidade, tipo de via e condições da pista. Já as técnicas não supervisionadas foram 

utilizadas para identificar estruturas latentes e perfis de risco, posteriormente 

incorporados como atributos adicionais nos modelos supervisionados.  
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5.2.3. Modelagem e Validação 

O processo de modelagem foi precedido por uma etapa de refinamento destinada 

à detecção e correção de data leakage. Essa etapa assegurou que apenas variáveis 

legítimas, disponíveis no momento da decisão, fossem utilizadas no treinamento e na 

validação dos modelos. O controle sistemático do vazamento de dados constituiu, 

portanto, um filtro metodológico essencial antes da aplicação dos algoritmos 

supervisionados e não supervisionados, evitando métricas infladas e garantindo a 

validade externa dos resultados 

Na sequência, a modelagem contemplou a implementação de seis algoritmos com 

pressupostos distintos: Random Forest, Extra Trees, Logistic Regression, Naive Bayes, 

XGBoost e LightGBM. Esses algoritmos foram aplicados a 11 variáveis-alvo (targets) 

definidas no estudo, resultando em 11 modelos supervisionados considerados confiáveis 

após validação cruzada estratificada (3-fold). Além disso, técnicas não supervisionadas, 

como K-Means e PCA, foram empregadas para identificar cinco perfis de sinistros. Esses 

clusters não foram tratados como modelos independentes, mas incorporados como 

variáveis explicativas adicionais nos modelos supervisionados, constituindo uma 

estratégia de engenharia de atributos que ampliou a capacidade preditiva. 

A reprodutibilidade foi garantida através da fixação de seeds aleatórias (valor 42) 

em todos os pontos críticos do pipeline, incluindo divisão de dados, inicialização de 

algoritmos e processos de amostragem. A validação foi conduzida utilizando 25% dos 

dados como conjunto de teste, mantido completamente separado durante o treinamento. 

O processo de modelagem foi concebido para assegurar a robustez metodológica 

e a reprodutibilidade dos resultados, combinando diferentes paradigmas de aprendizado 

de máquina e múltiplos algoritmos em paralelo. A escolha por aplicar abordagens 

supervisionadas e não supervisionadas fundamenta-se na necessidade de, por um lado, 

estimar funções preditivas para variáveis de interesse operacional e, por outro, identificar 

padrões latentes não rotulados que enriquecessem a compreensão do fenômeno. 

Nos modelos supervisionados, o conjunto de 4.601 registros foi dividido em 75% 

para treino (≈ 3.451 registros) e 25% para teste (≈ 1.150 registros), mantendo 

estratificação nas tarefas de classificação. A reprodutibilidade foi garantida por meio da 

fixação de seeds aleatórias e pela utilização de validação cruzada estratificada (3-fold). 

Foram implementados seis algoritmos de referência com pressupostos distintos: Random 
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Forest, Extra Trees, Logistic Regression, Naive Bayes, XGBoost e LightGBM. Essa 

diversidade metodológica teve como objetivo reduzir o viés decorrente da dependência 

em um único modelo e avaliar o desempenho sob diferentes estruturas de ajuste estatístico 

e computacional. 

Nos modelos não supervisionados, optou-se por utilizar a totalidade dos registros 

(100%), uma vez que não havia rótulos a serem previstos. Técnicas de agrupamento (K-

Means, DBSCAN, hierárquico de Ward), redução de dimensionalidade (PCA) e detecção 

de anomalias (Isolation Forest) foram aplicadas para identificar perfis de risco, padrões 

espaço-temporais e outliers relevantes. Os clusters derivados não foram tratados como 

variáveis-alvo, mas incorporados como features adicionais em modelos supervisionados, 

seguindo prática consolidada de engenharia de atributos. 

De modo geral, as aplicações de aprendizado de máquina foram conduzidas 

adotando inicialmente os parâmetros padrão da biblioteca de implementação, com ajustes 

experimentais de hiperparâmetros a partir da acurácia obtida em validação cruzada. Para 

mitigar riscos de sobreajuste e de métricas inflacionadas por data leakage, foi 

implementado um sistema de validação em múltiplas camadas. Esse processo incluiu: (i) 

análise de correlação entre variáveis remanescentes e proxies temporais; (ii) sinalização 

automática de modelos com accuracy > 0,98 ou R² > 0,95; e (iii) inspeção de learning 

curves para monitorar o equilíbrio entre treino e validação. Apenas os modelos que 

cumpriram esses critérios foram considerados confiáveis, compondo o conjunto final de 

predições. 

A Figura 31 apresenta o fluxograma metodológico da modelagem e validação, 

sintetizando as etapas de pré-processamento, divisão de bases, aplicação dos algoritmos 

supervisionados e não supervisionados, e procedimentos de validação adotados. 
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Figura 31 – Fluxograma metodológico. 

 
 

O fluxograma sintetiza a articulação entre as etapas metodológicas e os resultados 

alcançados. O pré-processamento e a correção de data leakage atuaram como filtros, 

garantindo a consistência das variáveis utilizadas. A modelagem supervisionada gerou 

predições aplicáveis a condições da via, gravidade e padrões temporais, enquanto a 

análise não supervisionada produziu os cinco clusters que caracterizaram perfis distintos 

de sinistros. Esses blocos se integram no refinamento metodológico que fundamentou os 

nove modelos confiáveis reportados nos resultados, articulando a função de cada técnica 

ao objetivo final da pesquisa. 

 

5.3. Resultados e Discussão 

5.3.1. Correção de Data Leakage 

O algoritmo utilizado na implementação de detecção de vazamento de dados 

identificou variáveis que apresentavam correlações artificialmente perfeitas ou 



 
 

 
 

90 

mapeamentos determinísticos que comprometeriam a validade dos modelos em 

aplicações práticas. 

A análise revelou múltiplas categorias de vazamento de dados presentes no 

dataset: 

• Vazamento Temporal Direto: A variável "hora_numerica" apresentava 

mapeamento unívoco com "periodo_detalhado", em que cada faixa horária 

correspondia deterministicamente a um período específico do dia. As 

horas 0-5 mapeavam invariavelmente para "Madrugada", 6-11 para 

"Manhã", 12-17 para "Tarde" e 18-23 para "Noite". Esta relação permitiria 

a um modelo alcançar 100% de acurácia na predição do período do dia, 

mas utilizando informação temporal precisa que não estaria disponível no 

momento da decisão de resposta a um sinistro em um cenário operacional 

real. 

• Vazamento por Variáveis Derivadas Temporais: As variáveis 

trigonométricas "hora_sin", "hora_cos", "mes_sin", "mes_cos", 

"dia_semana_sin" e "dia_semana_cos" foram identificadas como fontes de 

vazamento por serem transformações matemáticas diretas das variáveis 

temporais originais. Estas variáveis mantinham a capacidade de 

reconstruir perfeitamente a informação temporal original, perpetuando o 

problema de vazamento através de uma representação matematicamente 

diferente, mas informativamente equivalente. 

• Vazamento por Variáveis de Interação Temporal: Variáveis compostas 

como "periodo_fds" (combinação de período do dia com indicador de fim 

de semana), "pico_fds" (interação entre horário de pico e fim de semana), 

"estacao_periodo" (combinação de estação do ano com período do dia) e 

"zona_periodo" (interação entre zona geográfica e período temporal) 

foram identificadas como fontes indiretas de vazamento. Embora não 

fossem diretamente temporais, estas variáveis permitiam a inferência de 

informações temporais específicas através das combinações, mantendo a 

capacidade de predição artificial. 

• Vazamento por Variáveis de Estado Temporal: Indicadores como 

"eh_fim_semana", "eh_inicio_mes", "eh_fim_mes", "eh_feriado" 

representavam estados temporais que, embora conceitualmente diferentes 
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das variáveis de tempo absoluto, mantinham capacidade de inferência 

temporal. Estas variáveis permitiriam a reconstrução de informações sobre 

quando o sinistro ocorreu, informação que não estaria disponível no 

momento da tomada de decisão preventiva. 

 
Nesse sentido, o dataset reduziu de 44 para 18 variáveis confiáveis, após remoção 

de atributos comprometidos por data leakage. Este refinamento buscou garantir que os 

modelos de aprendizado de máquina fossem construídos apenas com informações 

disponíveis no momento da decisão, respeitando os princípios de validade metodológica 

e segurança operacional (Kaufman et al., 2012; Kapoor & Narayanan, 2023). 

A decisão de remoção de 27 variáveis foi fundamentada na análise de que, em um 

cenário operacional real, sistemas preditivos de sinistros devem ser baseados 

exclusivamente em informações disponíveis antes da ocorrência do evento ou em seu 

momento inicial, quando decisões de resposta ainda podem ser implementadas. Variáveis 

que permitam a reconstrução de informações temporais específicas violam este princípio 

fundamental. As variáveis removidas são apresentadas na Tabela 7: 

 
Tabela 7 - Variáveis Removidas por Categoria de Data Leakage. 

Categoria Variáveis Removidas Motivo da Remoção 

Temporais Diretas (3) hora_numerica, 
periodo_detalhado, Período 

Mapeamento determinístico 1:1 
entre hora e período do dia. 

Temporais Derivadas (7) 
horario_pico, hora_sin, hora_cos, 
mes_sin, mes_cos, 
dia_semana_sin, dia_semana_cos 

Transformações matemáticas que 
preservam informação temporal 
original. 

Estados Temporais (12) 

ano, Ano, mes, dia_semana, 
dia_mes, semana_ano, 
eh_feriado, eh_fim_semana, 
eh_inicio_mes, eh_fim_mes, 
trimestre, estacao 

Indicadores que permitem 
reconstrução de informações 
temporais específicas. 

Interações Temporais (4) periodo_fds, pico_fds, 
estacao_periodo, zona_periodo 

Combinações que mantêm 
capacidade de inferência 
temporal. 

Identificadores (1) bairro 
Código único que permite 
memorização ao invés de 
generalização. 

 

A remoção das categorias apresentadas demonstrou como estas variáveis 

comprometeriam a validade dos modelos em aplicações prospectivas: 

• Temporais Diretas: Apresentavam correlação perfeita (r = 1.0) com 

outcomes temporais. Um modelo que sabe que são "14:30" pode prever 

com 100% de certeza que é "Tarde", mas esta informação não estaria 
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disponível em um sistema de alerta preventivo que deve identificar 

condições de risco antes dos sinistros ocorrerem. 

• Temporais Derivadas: As transformações trigonométricas (sin/cos) 

mantinham toda a informação temporal original em formato 

matematicamente diferente. Um modelo poderia reconstruir o horário 

exato a partir de hora_sin e hora_cos, perpetuando o problema de 

vazamento através de uma representação alternativa. 

• Estados Temporais: Variáveis como "eh_fim_semana" ou "trimestre" 

permitiam inferência de contexto temporal específico. Um sistema que 

sabe que um sinistro ocorreu "no primeiro trimestre de 2023" tem acesso 

à informação temporal que não estaria disponível para predições 

prospectivas. 

• Interações Temporais: Combinações como "periodo_fds" (manhã + fim de 

semana) preservavam capacidade de inferência temporal através de 

relacionamentos compostos. Mesmo sem acesso direto ao horário, o 

modelo poderia inferir padrões temporais específicos através destas 

combinações. 

• Identificadores: Códigos únicos como "bairro" permitiam ao modelo 

memorizar casos específicos ao invés de aprender padrões generalizáveis. 

Um modelo que memoriza que "acidente #1234 no código 567 foi grave" 

não está aprendendo padrões aplicáveis a novos casos, mas sim 

memorizando outcomes históricos específicos. 

 

Cada uma destas categorias violava o princípio fundamental de que modelos 

preditivos devem basear-se exclusivamente em informações que estariam legitimamente 

disponíveis no momento da aplicação prática, seja para prevenção, triagem inicial ou 

alocação de recursos de emergência. 

 

Validação da Correção de Data Leakage 

Para garantir a completude da remoção de vazamento de dados, foi implementado 

um sistema de validação em múltiplas camadas. Primeiro, foi conduzida uma análise de 

correlação entre todas as variáveis remanescentes e potenciais proxies temporais, 
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verificando que nenhuma variável mantida permitia a reconstrução de informações 

temporais específicas com correlação superior a 0.3. 

A segunda camada consistiu na implementação de um sistema que identificasse 

modelos com performance com acurácia superior a 99,9% para problemas de 

classificação ou R² superior a 0.98 para problemas de regressão, sendo automaticamente 

sinalizado para investigação adicional de possível vazamento residual, caso encontrado. 

Este sistema de detecção baseado em thresholds de performance foi fundamental para 

identificar vazamentos sutis que poderiam escapar à análise de correlação direta. 

Na terceira camada, foi conduzida uma análise de learning curves para todos os 

modelos desenvolvidos, verificando que o gap entre performance de treino e validação 

permanecia nos limites aceitáveis (diferença inferior a 5% para problemas de 

classificação). Modelos com gaps excessivos foram sinalizados como potencialmente 

comprometidos por overfitting, que pode ser indicativo de vazamento de dados residual. 

Os resultados desta validação em múltiplas camadas confirmaram a eliminação 

efetiva do data leakage. Nenhum dos modelos finais apresentou performance suspeita 

que indicasse vazamento residual, e todos demonstraram gaps apropriados entre treino e 

validação, confirmando que aprenderam padrões generalizáveis ao invés de memorizar 

casos específicos. 

A redução sistemática de 44 para 18 variáveis, representando diminuição de 60% 

nas dimensões originais, ilustra a extensão do problema de data leakage presente no 

dataset original e ressalta a importância crítica de análises rigorosas de vazamento de 

dados em aplicações de aprendizado de máquina. Esta magnitude de redução, embora 

substancial, foi necessária para garantir a integridade metodológica e a aplicabilidade 

prática dos modelos desenvolvidos. 

Após a limpeza de data leakage, foi implementado um processo de engenharia de 

características para compensar a perda de informação temporal e maximizar o potencial 

preditivo das variáveis restantes. Este processo incluiu a criação de dez variáveis-alvo 

(targets) derivadas das características originais dos sinistros. 

As variáveis-alvo foram desenvolvidas seguindo critérios de relevância prática e 

aplicabilidade operacional. O target "gravidade_detalhada" classifica sinistros em quatro 

níveis de severidade baseados na natureza do incidente, enquanto "gravidade_binaria" 

simplifica esta classificação em sinistros graves versus não graves. O 

"condicoes_adversas_score" combina informações meteorológicas e de estado da via para 

criar um índice de risco ambiental. 
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O processo de codificação de variáveis categóricas foi implementado utilizando 

Label Encoding para variáveis binárias, One-Hot Encoding para variáveis de baixa 

cardinalidade e combinações de Label Encoding com Frequency Encoding para variáveis 

de alta cardinalidade. Esta abordagem híbrida otimiza o balance entre expressividade dos 

dados e eficiência computacional. 

A criação de variáveis de agregação envolveu o cálculo de estatísticas descritivas 

(média, desvio padrão, contagem) agrupadas por categorias geográficas e contextuais. Por 

exemplo, foram calculadas médias de frequência de sinistros por bairro e dia da semana, 

permitindo que os modelos capturem padrões locais e temporais específicos. 

Variáveis polinomiais foram introduzidas para capturar relações não lineares, 

particularmente através da aplicação de transformações quadráticas e logarítmicas às 

variáveis de frequência e densidade. A normalização robusta foi aplicada utilizando 

RobustScaler e StandardScaler, garantindo que variáveis com diferentes escalas 

contribuam equitativamente para os modelos. 

 
5.3.2. Análise exploratória 

Distribuição espacial 

O conjunto de dados é composto de 4.601 registros de sinistros de trânsito, 

tratados e organizados, conforme os critérios de limpeza, padronização e transformação 

de variáveis. Após o tratamento dos dados, foram geradas variáveis temporais e 

categóricas adicionais, possibilitando análises mais refinadas sobre padrões temporais e 

geográficos dos sinistros. As figuras a seguir representam os principais resultados 

obtidos. 

A análise temporal evidencia que o período vespertino concentra a maior parte 

dos sinistros, totalizando 1.896 registros, o que representa 41,2% do total. Em seguida, 

observa-se alta incidência no período da manhã, com 1.435 ocorrências (31,2%), e à noite, 

com 1.121 (24,4%). Os registros durante a madrugada são significativamente menores, 

somando apenas 149 casos (3,2%). Além disso, 38,3% dos sinistros ocorreram em 

horários considerados de pico (entre 7h e 9h e 17h e 19h), o que pode estar relacionado 

aos momentos de maior movimentação urbana. Também é notável que a maioria dos 

sinistros ocorre em dias úteis (78,5%), enquanto os fins de semana concentram apenas 

21,5% das ocorrências, o que representa uma sub-representação de 7,1 pontos percentuais 
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em relação ao esperado (considerando que os fins de semana compreendem 2 de 7 dias 

da semana). Em relação à distribuição sazonal, o outono é a estação com maior frequência 

de sinistros (32,6%), seguido do verão (25,7%), inverno (24,2%) e primavera (17,5%). 

 
Figura 32 - Distribuição dos sinistros por período do dia, horário de pico, dias úteis versus fins de semana 

e estações do ano. 

 
 

A Figura 32 apresenta uma síntese visual dos padrões temporais identificados nos 

registros de sinistros de trânsito. São exploradas diversas dimensões temporais com o 

objetivo de elucidar tendências e concentrações ao longo do tempo. 

No canto superior esquerdo, a distribuição por hora do dia revela uma 

concentração de sinistros entre 7h e 20h, com picos notáveis durante os horários de pico 

matutino e vespertino. A barra em vermelho reforça essas faixas críticas, destacando a 

necessidade de maior atenção a essas janelas temporais. 

Centralizado no topo, o período vespertino é apresentado com o maior número de 

registros (1.896), seguido pela manhã (1.435) e pela noite (1.121). A madrugada é o 

período menos crítico, com apenas 149 registros. 

À direita, observa-se a distribuição por dia da semana. Os dias úteis mantêm uma 

distribuição relativamente uniforme, com leve variação entre segunda e sexta-feira, 

enquanto os finais de semana, especialmente o domingo, apresentam queda acentuada na 

frequência de sinistros. 

No canto inferior esquerdo, a distribuição mensal evidencia a sazonalidade dos 

sinistros, com maior incidência nos primeiros seis meses do ano e queda acentuada nos 
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últimos três meses. O outono e o verão são os períodos sazonais mais críticos, conforme 

análises complementares. 

Ao centro, o gráfico de pizza mostra a divisão entre sinistros ocorridos em horários 

de pico (38,3%) e fora do pico (61,7%). 

No canto inferior direito, o heatmap (mapa de calor) correlaciona hora e dia da 

semana, apontando que os sinistros se concentram entre 11h e 18h nos dias úteis, 

evidenciando o impacto direto da rotina laboral e do tráfego urbano nas ocorrências.  

 
Figura 33 - Análise dos padrões temporais. 
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Distribuição geográfica 

A Tabela 8 apresenta os 10 bairros com mais registros de sinistro. Destacam a 

agregação de Outros Bairros (1.277 registros), Setor Central (710), Jardim Goiás (388) e 

Bairro Popular (289). Juntos, os cinco primeiros bairros representam aproximadamente 

62,5% do total de sinistros.  

A categoria “Outros_Bairros” agrega localidades menos recorrentes, porém 

reforça que poucos bairros acumulam a maior parte dos sinistros reportados.  

 
Tabela 8 - Top 10 Bairros com mais sinistros. 

Posição Bairro Número de Sinistros (%) 
1 Outros bairros 1.277 (27.8%) 
2 Setor Central 710 (15.4%) 
3 Jardim Goiás 388 (8.4%) 
4 Bairro Popular 289 (6.3%) 
5 Setor Pauzanes 213 (4.6%) 
6 Setor Morada do Sol 196 (4.3%) 
7 Vila Maria 187 (4.1%) 
8 Jardim Presidente 179 (3.9%) 
9 Parque Bandeirante 150 (3.3%) 
10 Bairro Martins 85 (1.8%) 

 

5.3.3. Aprendizagem de máquina não supervisionado 

A presente análise teve por objetivo a identificação de perfis distintos de sinistros 

de trânsito por meio de técnicas de agrupamento (clustering), possibilitando, assim, a 

compreensão de padrões latentes nos dados e a proposição de estratégias direcionadas de 

prevenção. Os registros foram organizados em cinco clusters, com base em variáveis 

associadas às condições das vias, período do dia, dia da semana e outros fatores 

contextuais. A qualidade geral do agrupamento foi avaliada pelo coeficiente de 

Silhouette, cujo valor de 0,122, embora modesto, indica separabilidade moderada entre 

os grupos identificados. 

 

Análise da Otimização do Número de Clusters 

A Figura 33 apresenta dois dos métodos mais utilizados para a definição do 

número ótimo de clusters em uma análise de agrupamento utilizando o algoritmo K-

means: o Método do Cotovelo (à esquerda) e a Análise do Coeficiente de Silhouette (à 

direita). 
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No gráfico da esquerda, observa-se o comportamento da inércia (ou soma das 

distâncias quadradas dentro dos clusters – WCSS) à medida que o número de clusters (K) 

aumenta. O “cotovelo” visível no ponto K=5 indica uma inflexão na curva, sugerindo que 

a adição de mais clusters a partir desse ponto resulta em reduções marginais na inércia. 

Assim, K=5 é visualmente identificado como o valor ótimo. 

No gráfico da direita, é apresentada a média do coeficiente de Silhouette para 

diferentes valores de K. Esse coeficiente avalia a qualidade dos agrupamentos, indicando 

a adequação de cada ponto ao seu respectivo cluster. O pico observado em K=5 (com 

valor máximo de 0.122) reforça a seleção desse valor como ideal, visto que representa o 

melhor equilíbrio entre coesão intra-cluster e separação inter-cluster. 

A convergência entre os dois métodos em K=5 fornece uma evidência da 

adequação desse número de agrupamentos, apoiando análises subsequentes com base 

nesse valor. 

 
Figura 34 - Determinação do Número Ótimo de Clusters via Métodos do Cotovelo e Silhouette. 

 
 

Análise de Clusters no Espaço PCA e t-SNE 

A representação dos clusters gerados a partir do algoritmo de K-Means, projetados 

no espaço bidimensional por meio da Análise de Componentes Principais (PCA) é 

apresentado na Figura 34. Essa técnica de redução de dimensionalidade permite visualizar 

os agrupamentos de maneira simplificada, conservando o máximo possível da variância 

original dos dados. No gráfico, cada ponto representa um sinistro de trânsito, enquanto as 

cores diferenciam os cinco clusters identificados. As cruzes vermelhas marcam os 

centroides de cada cluster, ou seja, os pontos médios que representam o centro geométrico 

de cada agrupamento.  
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As componentes principais PC1 e PC2 explicam, respectivamente, 10,4% e 8,1% 

da variância dos dados, somando uma variância total explicada de 18,5%. Embora a 

porcentagem de variância explicada pelas duas primeiras componentes não seja alta, a 

visualização oferece uma perspectiva útil para identificar padrões, sobreposições e 

distanciamentos entre os agrupamentos. 

A disposição espacial dos clusters revela características específicas em termos de 

proximidade e dispersão. Por exemplo, o Cluster 2 (em roxo), localizado à esquerda, 

apresenta-se bem definido e relativamente separado dos demais, sugerindo um padrão 

mais homogêneo entre os registros que o compõem. Em contrapartida, os Clusters 0, 1 e 

3 mostram interseções visuais significativas, sugerindo possível sobreposição de 

características ou menor distinção entre seus perfis. Já o Cluster 4, em amarelo, apresenta 

uma distribuição mais dispersa, indicando maior heterogeneidade interna. 

A visualização no espaço PCA permite avaliar visualmente a coerência dos 

agrupamentos formados, identificar clusters com maior ou menor separabilidade e 

orientar a interpretação dos padrões comportamentais extraídos nos dados de sinistros. 

A Figura 35 apresenta a visualização dos agrupamentos (clusters) gerados a partir 

da técnica t-SNE (t-Distributed Stochastic Neighbor Embedding), aplicada aos dados de 

sinistros de trânsito. Esse método é comumente utilizado para a redução de 

dimensionalidade e é especialmente eficaz na preservação das relações locais em 

conjuntos de dados complexos e de alta dimensionalidade. 

A dispersão observada entre os clusters reforça a heterogeneidade dos dados, 

evidenciando que os sinistros possuem características particulares que os agrupam de 

maneira coerente em termos de comportamento e contexto. A técnica de t-SNE permite 

observar, de forma mais clara, a separação entre os clusters que não é facilmente 

perceptível em análises com múltiplas variáveis simultâneas. 
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Figura 35 - Visualização dos Clusters com PCA. 

 
 

Figura 36 - Visualização dos Clusters com t-SNE. 
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Seis mapas de calor que ilustram as distribuições relativas das variáveis 

categóricas mais relevantes entre os clusters identificados na análise (Figura 36). No 

canto superior esquerdo, observa-se a distribuição dos dias da semana, destacando que o 

Cluster 4 concentra 25,6% dos casos aos domingos, sugerindo comportamentos 

específicos de risco em fins de semana. Ao lado, o mapa de calor referente ao período do 

dia indica que o Cluster 1 é dominado por sinistros matutinos (99,2%), enquanto o Cluster 

3 concentra-se no período vespertino (98,9%).  

A distribuição das naturezas dos sinistros possui predominância de colisão em 

quase todos os clusters, exceto no Cluster 2, em que há maior proporção de choque em 

objeto fixo. Na linha inferior, a distribuição por zona confirma que os sinistros se 

concentram quase exclusivamente em área urbana em todos os clusters. A distribuição 

por tipo de controle de tráfego evidencia onde semáforo sem defeito e placas de parada 

obrigatória aparecem frequentemente, mas com variação de intensidade por cluster. Por 

fim, o último gráfico destaca o tipo de pista, evidenciando que a maior parte dos sinistros 

em todos os grupos ocorreu em pistas simples (acima de 60% em todos os clusters).  

 
Figura 37 - Distribuições por Cluster. 
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Comparações Estatísticas entre Clusters 

A Figura 37 apresenta uma série de visualizações que permitem uma análise 

comparativa entre os clusters identificados a partir do agrupamento de dados de sinistros 

de trânsito. Na parte superior esquerda, o gráfico de barras exibe o tamanho absoluto dos 

clusters em número de sinistros: o Cluster 3 concentra a maior quantidade (1.596), 

seguido pelo Cluster 1 (1.203), Cluster 2 (920), Cluster 0 (663) e, por fim, o Cluster 4 

com 219 ocorrências. Já o gráfico superior direito mostra a distribuição percentual de 

cada cluster em relação ao total, confirmando a dominância relativa do Cluster 3, com 

34,7% do total de sinistros agrupados. 

Na parte inferior esquerda, o gráfico de pizza ilustra a predominância dos tipos de 

sinistros, destacando que colisões representam 60% dos casos predominantes por cluster, 

seguidas por abalroamentos com 40%. Essa visualização evidencia o tipo de sinistro mais 

frequente nos agrupamentos realizados. Por fim, o gráfico radar localizado no canto 

inferior direito permite a comparação simultânea de três atributos dos clusters: a média 

do código do bairro, a proporção do tipo de sinistro dominante (Pct Tipo Dom) e o 

percentual geral do cluster. Essa combinação de atributos é útil para identificar clusters 

com perfis mais homogêneos ou com maior impacto estatístico sobre o conjunto de dados. 

 
Figura 38 - Análise Comparativa da Estrutura e Perfil dos Clusters Identificados. 
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O Cluster 0, composto por 663 sinistros (14,4%), apresentou um perfil singular 

de elevada ocorrência em vias molhadas (55,8% contra 9,5% na média geral), sugerindo 

influência direta das condições meteorológicas na ocorrência dos sinistros. Este grupo 

requer atenção específica, sobretudo para monitoramento em períodos de chuva ou pista 

escorregadia, ainda que a prioridade de intervenção seja considerada baixa. 

O Cluster 1 (1.203 sinistros; 26,1%) é fortemente associado ao período matutino, 

com 99,2% das ocorrências concentradas nesse intervalo, frente a 31,7% na amostra geral.  

O Cluster 2 reúne 920 sinistros (20,0%) e caracteriza-se pela predominância de 

ocorrências no período noturno (96,6%), bem acima da média geral de 26,5%.  

Já o Cluster 3, maior dentre os grupos (1.596 sinistros; 34,7%), apresenta clara 

associação com o período vespertino, com 98,9% das ocorrências.  

Por fim, o Cluster 4 (219 sinistros; 4,8%) agrega características peculiares, com 

25,6% das ocorrências registradas aos domingos (frente a 8,5% no geral) e 66,7% no 

período noturno.  

Os principais insights revelam que o Cluster 3 é o mais representativo, enquanto 

o Cluster 4 apresenta especificidades importantes. A distribuição dos agrupamentos, 

variando de 219 a 1.596 registros, reforça a heterogeneidade dos sinistros e a importância 

de abordagens segmentadas. 

 

Análise dos padrões temporais por cluster 

A Figura 38 intitulada 'Distribuição dos Padrões Temporais por Cluster de 

Sinistros' apresenta um conjunto de mapas de calor que descrevem a distribuição temporal 

dos sinistros de trânsito segundo os clusters identificados na análise de agrupamento. 

No canto superior esquerdo, a matriz "Padrão Temporal: Dia da Semana" indica a 

frequência relativa de sinistros por dia da semana em cada cluster. Observa-se que o 

Cluster 4 destaca-se significativamente aos domingos (25,6%) e sábados (24,7%), 

sugerindo que esse grupo concentra sinistros em fins de semana, e pode estar relacionado 

ao comportamento recreativo dos condutores. 

O gráfico superior direito, "Padrão Temporal: Tempo", revela as condições 

meteorológicas predominantes durante os sinistros. Os clusters 1, 2 e 3 concentram quase 

exclusivamente ocorrências sob tempo "bom", com porcentagens acima de 99%, 

enquanto o Cluster 0 apresenta maior diversidade, incluindo 34,2% de casos sob chuva e 

50,4% em condições nubladas. 
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Na parte inferior esquerda, a matriz "Padrão Temporal: Período Detalhado" 

mostra a distribuição dos sinistros ao longo dos períodos do dia. Cada cluster exibe um 

padrão temporal marcante: o Cluster 1 é predominante no período matutino (99,1%), o 

Cluster 2 no período noturno (90,4%) e o Cluster 3 no vespertino (99,8%). O Cluster 4, 

por sua vez, apresenta concentração noturna mais equilibrada (53%), seguida por 

madrugada (15,5%).  

A matriz inferior direita, "Padrão Temporal: Horário de Pico", destaca a proporção 

de sinistros ocorridos em horários de pico. Os clusters 1 e 2 concentram a cerca de 52% 

dos sinistros nesses horários, enquanto o Cluster 3 apresenta apenas 18% nesse contexto, 

indicando menor associação com congestionamentos. 

 
Figura 39 - Distribuição dos Padrões Temporais por Cluster. 

 
 

5.3.4. Aprendizagem de máquina supervisionado 

Nesta seção, descreve-se os procedimentos realizados durante a execução do 

script de otimização balanceada para predição de variáveis relacionadas a sinistros de 
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trânsito. O objetivo principal foi treinar e validar modelos de machine learning 

supervisionado, tanto para tarefas de classificação quanto de regressão, garantindo a 

confiabilidade das predições através de validações cruzadas e alertas automáticos de 

overfitting. 

O dataset foi dividido entre treino e teste utilizando a proporção de 75% para 

treino e 25% para teste, com estratificação nas tarefas de classificação. 

Os seguintes algoritmos foram aplicados: Random Forest Classifier, Extra Trees 

Classifier, Logistic Regression, XGBoost e LightGBM. Para tarefas de regressão, foram 

aplicados: Random Forest Regressor, Extra Trees Regressor, Linear Regression, Ridge 

Regression, XGBoost Regressor e LightGBM Regressor. 

Foram abordadas classes de problemas de classificação binária, multiclasse e 

regressão contínua. As variáveis-alvo incluem: período crítico do sinistro (manhã, tarde, 

noite, fim de semana), tipo de via (simples, dupla), gravidade e complexidade. 

A avaliação dos modelos foi realizada por meio de validação cruzada (3-fold) para 

estimar a performance geral e evitar overfitting. Foram definidas métricas de alerta com 

base em limiares: accuracy > 0.98 e R² > 0.95 eram sinalizados como possivelmente 

inflacionados. Resultados com scores perfeitos (1.0) foram sinalizados como altamente 

suspeitos. Todos os modelos foram classificados com base na confiabilidade das 

predições. 

A Tabela 9 consolida os principais resultados obtidos com os modelos preditivos 

considerados confiáveis, conforme critérios metodológicos definidos na etapa de 

validação cruzada. Destacam-se modelos com acurácia superior a 90%, como aqueles 

voltados à predição de condições da via (seca ou molhada) e de períodos compostos (ex.: 

manhã em fim de semana), todos validados com baixa variabilidade entre os folds.  

 
Tabela 9 – Principais resultados obtidos. 

Target Algoritmo Tipo Accuracy F1-
Score 

CV 
Score 

CV 
Std 

periodo_fds Logistic Regression Classificação 0.788 0.725 0.788 0.005 

via_molhada Random Forest Classificação 0.963 0.957 0.963 0.004 

via_seca Random Forest Classificação 0.959 0.96 0.959 0.004 

periodo_fds_manhã_fds Logistic Regression Classificação 0.946 0.928 0.946 0.002 

periodo_fds_manhã_semana Logistic Regression Classificação 0.936 0.943 0.936 0.002 

periodo_fds_noite_fds Logistic Regression Classificação 0.932 0.907 0.932 0.001 

periodo_fds_noite_semana Logistic Regression Classificação 0.927 0.938 0.927 0.004 
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periodo_fds_tarde_fds Logistic Regression Classificação 0.93 0.898 0.93 0.001 

periodo_fds_tarde_semana LightGBM Classificação 0.93 0.931 0.924 0.01 

via_dupla Random Forest Classificação 0.715 0.694 0.715 0.012 

complexidade_acidente Random Forest Regressão - - 0.762 0.009 

 

A aplicação de algoritmos de clustering em bases de dados complexas representa 

uma abordagem eficaz para identificar padrões latentes e estruturar perfis 

comportamentais em contextos em que as classes não são previamente definidas. No 

presente estudo, a técnica de K-Means foi utilizada para agrupar 4.601 registros de 

sinistros de trânsito em cinco clusters distintos, com base em um conjunto de 31 variáveis 

contínuas e categóricas previamente tratadas e codificadas. A redução de 

dimensionalidade por meio da Análise de Componentes Principais (PCA) foi aplicada 

para assegurar a eficiência do agrupamento, mantendo a maior variabilidade explicada 

com o menor número de componentes. 

Uma vez definidos os clusters, não foram tratados como alvos das predições, o 

que configuraria um uso conceitualmente equivocado e metodologicamente inválido. Ao 

contrário, os clusters foram incorporados como variáveis explicativas (features) em 

modelos supervisionados, sendo utilizados como parte de uma estratégia avançada de 

engenharia de atributos (feature engineering).  

Essa prática é documentada na literatura de ciência de dados e aprendizado de 

máquina, sendo recomendada pelo potencial de capturar efeitos combinados entre 

variáveis que não seriam detectados isoladamente, enriquecendo a capacidade preditiva 

dos modelos (KUHN; JOHNSON, 2019; JAMES et al., 2021). 

Três tarefas preditivas foram conduzidas a partir dessa estratégia: (i) a predição 

de perfis de risco associados aos sinistros, (ii) a estimativa de complexidade dos eventos 

e (iii) a classificação dos padrões temporais dos sinistros (manhã, tarde, noite ou 

madrugada). Em todos os casos, os clusters foram inseridos como uma variável categórica 

adicional no conjunto de preditores, ao lado de outras variáveis como horário, localização, 

tipo de veículo e condições climáticas. 

Os resultados indicaram que a inclusão da variável cluster contribuiu para o 

aprimoramento dos modelos, com métricas robustas de desempenho: acurácia de 97,4% 

para classificação de risco com Decision Tree, coeficiente de determinação (R²) de 0,867 

na regressão de complexidade com Random Forest, e acurácia de 96,5% na classificação 

temporal com Random Forest. Essas evidências demonstram que os agrupamentos não 
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supervisionados forneceram insumos significativos para a predição supervisionada, 

atuando como uma forma de compressão semântica dos dados originais. 

A utilização de clusters como atributos preditores, e não como alvos das 

predições, configura um recurso que amplia a capacidade explicativa dos modelos, 

favorecendo a construção de sistemas preditivos mais precisos, interpretáveis e aplicáveis 

em contextos reais de análise como no caso da gestão da segurança viária. 

 

Análise Crítica das Predições com alto score 

O uso de algoritmos de aprendizado de máquina em tarefas supervisionadas, como 

classificação e regressão, visa construir modelos capazes de generalizar padrões e realizar 

previsões com boa acurácia sobre dados novos. No entanto, quando os modelos 

apresentam escores muito elevados, como accuracy ou coeficiente de determinação (R²) 

próximos ou iguais a 1.000, é necessário adotar uma abordagem criteriosa para distinguir 

entre bom desempenho real e overfitting, isto é, a memorização dos dados de treino, o 

que compromete a capacidade de generalização. 

O sistema de otimização balanceada utilizado neste projeto destaca-se justamente 

por implementar esse cuidado. Ele mantém a análise original, mas adiciona validações e 

alertas inteligentes para interpretar corretamente o significado desses altos scores. A partir 

dessa lógica, os resultados foram classificados como: 

• Confiáveis: resultados altos e realistas, com variações esperadas e boa 

performance em validação cruzada. 

• Suspeitos: resultados possivelmente inflacionados, com scores perfeitos 

ou muito próximos de 1.0, que levantam suspeita de overfitting ou 

problemas como data leakage, classes desbalanceadas ou codificações 

excessivamente informativas. 

 

Predições confiáveis são aquelas cujos modelos apresentaram desempenho 

elevado e consistente entre os dados de treino e teste (validação cruzada), com métricas 

realistas. No presente estudo, destacam-se 11 predições consideradas confiáveis seguindo 

estes parâmetros (Tabela 10). Esses resultados indicam que, mesmo com valores 

elevados, os scores não são perfeitos, o que é um sinal saudável de que o modelo está 

lidando com variação nos dados e não está decorando padrões específicos. 

 
Tabela 10 - 11 modelos classificados como confiáveis. 
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N Atributo Accuracy (ou R²) Algoritmo 
1 periodo_fds 0,788 Logistic Regression 
2 via_molhada 0,963 Random Forest 
3 via_seca 0,959 Random Forest 
4 periodo_fds_manhã_fds 0,946 Logistic Regression 
5 periodo_fds_manhã_semana 0,936 Logistic Regression 
6 periodo_fds_noite_fds 0,932 Logistic Regression 
7 periodo_fds_noite_semana 0,927 Logistic Regression 
8 periodo_fds_tarde_fds 0,93 Logistic Regression 
9 periodo_fds_tarde_semana 0,924 LightGBM 
10 via_dupla 0,715 Random Forest 
11 complexidade_acidente 0,762 Random Forest 
 

Na prática, as predições geradas por modelos de machine learning em problemas 

como o analisado neste estudo podem servir como instrumentos poderosos de apoio à 

decisão, sobretudo em contextos de gestão pública, segurança viária, planejamento 

urbano e prevenção de riscos. 

 

5.4. Conclusão 

A aplicação do sistema de detecção e supressão de vazamento de dados (data 

leakage) resultou na exclusão de 27 variáveis temporais e identificadores que permitiam 

inferências indevidas, preservando 18 preditores livres de viés temporal. Essa escolha 

metodológica assegurou que os modelos gerados refletissem relações genuínas entre 

condições da via, fatores sazonais e infraestrutura, em vez de memorizarem padrões 

específicos de séries históricas. 

Com a base depurada, foram desenvolvidos onze modelos supervisionados 

considerados confiáveis, cujas métricas de desempenho oscilaram entre 67,8% e 96,7% 

de acurácia ou R², aferidas por validação cruzada estratificada. Em paralelo, a análise não 

supervisionada identificou cinco clusters distintos de sinistros, complementando a 

compreensão dos padrões de risco. A diversidade de alvos, como condições adversas da 

via, gravidade detalhada e presença de pista dupla ou molhada, demonstra capacidade de 

resposta a distintos quesitos operacionais de segurança viária. 

A análise de importância das variáveis indicou a centralidade de fatores 

geográficos, sazonais e de infraestrutura na ocorrência dos sinistros, reforçando o 

predomínio de padrões espaciais e ambientais sobre marcadores exclusivamente 
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temporais. Ainda assim, a remoção de atributos temporais de alta cardinalidade impôs 

limitação intrínseca: a impossibilidade de prever janelas horárias específicas ou variações 

semanais muito finas, um trade-off metodológico necessário para manter a validade 

preditiva em cenários prospectivos. 

Por fim, o trabalho evidencia que procedimentos rigorosos de saneamento de 

dados e controle de data leakage constituem pré-requisito para modelos de aprendizado 

de máquina que se pretendem generalizáveis e úteis na gestão de segurança viária. Os 

resultados estabelecem um referencial metodológico que pode ser transposto a outros 

contextos em que a distinção entre correlação legítima e vazamento de informação é 

crucial para a credibilidade científica e a aplicação prática dos modelos. 
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6. CONCLUSÃO GERAL 

A presente dissertação investiga, de modo integrado, os sinistros de trânsito 

ocorridos no município de Rio Verde (GO) entre 1.º de janeiro de 2021 e 31 de dezembro 

de 2024, período em que a Agência Municipal de Mobilidade e Trânsito (AMT) registrou 

7.926 ocorrências eletrônicas. Tal recorte temporal coincide com o primeiro quadriênio 

da Década de Ação pela Segurança no Trânsito 2021-2030, bem como com a fase inicial 

da consolidação do Plano Nacional de Redução de Mortes e Lesões no Trânsito 

(PNATRANS), ambos referenciais normativos que orientam políticas públicas de 

prevenção no Brasil e em escala global. 

À luz desses marcos, o trabalho foi estruturado em três artigos complementares 

que, em conjunto, respondem ao objetivo geral de caracterizar padrões estatísticos, 

espaciais e preditivos dos sinistros locais. O primeiro artigo desenvolveu análise 

exploratória e estatística descritiva da série temporal; o segundo examinou a distribuição 

espacial e espaciotemporal por técnicas de densidade kernel, Moran I/LISA e DBSCAN; 

o terceiro avaliou a capacidade de modelos de aprendizado de máquina, com controle 

rigoroso de data leakage, antever condições de risco com base em variáveis operacionais.  

Os resultados consolidados demonstram que a integração de análise exploratória, 

estatística espacial e modelagem preditiva, aplicada a uma base eletrônica municipal com 

alta completude, constitui abordagem suficiente para caracterizar padrões, identificar 

áreas críticas e antecipar condições de risco de sinistros de trânsito.  

Ao mesmo tempo, reforça a aderência do município às metas do PNATRANS e à 

Década de Ação pela Segurança no Trânsito 2021-2030, fornecendo um modelo 

replicável de governança de dados e monitoramento contínuo. Dessa forma, a dissertação 

cumpre o objetivo de gerar conhecimento aplicável e delineia um caminho claro para a 

evolução de políticas públicas baseadas em evidências, sustentado por metodologias 

transparentes e reprodutíveis. 

 

Limitações do estudo 

Apesar da elevada completude da base eletrônica e da abrangência temporal de 

quatro anos, o estudo apresenta limitações que condicionam a interpretação dos 

resultados. Persistem indícios de subnotificação, já que incidentes sem acionamento 

oficial, sobretudo aqueles com danos leves e ausência de vítimas, não integram o registro 
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da AMT, gerando possível viés de representatividade. A precisão geoespacial, embora 

alta, é heterogênea: parte das ocorrências foi geocodificada na sede da AMT, e resultou 

em limpeza destes registros, a cerca  de 10% do total do dataset, resultando na dificuldade 

de análises geoespaciais por bairro.  

Os modelos preditivos, ainda que controlados para data leakage, foram limitados 

a dezoito preditores operacionais, uma vez que o processo de detecção e supressão excluiu 

variáveis temporais e identificadores que permitiam inferências indevidas, reduzindo o 

conjunto original de 44 atributos para 18 efetivamente utilizáveis, o que impôs um teto 

ao desempenho alcançado ao excluir fatores comportamentais e infraestruturais mais 

finos. 

Ademais, o recorte territorial restrito a Rio Verde e as particularidades de sua 

malha viária e fiscalização limitam a generalização direta dos achados para municípios 

com características distintas. Por fim, o horizonte temporal de 2021 a 2024 permite 

capturar variações sazonais, mas pode não evidenciar mudanças estruturais de longo 

prazo decorrentes de intervenções graduais de engenharia ou de alterações 

macroeconômicas que influenciem o volume de tráfego. 

 

Benefícios operacionais preliminares para a Agência Municipal de Mobilidade e 

Trânsito (AMT) 

A execução deste projeto já resulta em ganhos tangíveis para a AMT. 

Historicamente, os quase oito mil registros de sinistros referentes ao período de 2021–

2024 eram inseridos manualmente por servidores da autarquia, procedimento moroso e 

propenso a erros. A presente pesquisa desenvolveu e destacou, no Capítulo I, um script 

de extração automática dos campos constantes nos formulários eletrônicos; esse código 

será entregue à AMT em formato reproduzível, reduzindo o tempo de processamento de 

novos registros e padronizando a qualidade da base. 

Além da automação de coleta, serão fornecidos mapas interativos dos sinistros em 

ambiente web, que podem ser integrados aos painéis de BI já utilizados pelo órgão, 

suprindo uma lacuna na análise espacial atualmente inexistente nos BI internos e 

oferecendo suporte imediato à tomada de decisão. 

A análise das coordenadas revelou, ainda, oportunidade de aprimoramento na 

etapa de georreferenciamento: mais de dez por cento dos registros apresentam localização 

coincidente com a sede da AMT. Tal padrão sugere duas hipóteses complementares: 

preenchimento integral dos boletins nas dependências da autarquia ou finalização dos 
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formulários apenas após retorno à base, e aponta para a necessidade de reforçar a captura 

de coordenadas no local do sinistro. A adoção do script e dos mapas, aliados a orientações 

operacionais, tende a mitigar esse viés geográfico, elevando a confiabilidade da 

informação para fins de planejamento e fiscalização. 
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Apêndice A 

Mapa interativo de calor – Sinistros em Rio Verde (GO) - 2021 a 2024 
Link: https://drive.google.com/file/d/1skBg4roT6lB3RGUbNf103mYwYa7NEmLN/view?usp=share_link 
Orientação: Para visualizar o conteúdo, é necessário baixar o arquivo em formato 
HTML e abri-lo em um navegador. 
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Apêndice B 

Mapa interativo por agrupamento – Sinistros em Rio Verde (GO) - 2021 a 2024 por 
número do Boletim 

Link: https://drive.google.com/file/d/1LI28TfSZcrf2tRvQNopIgJnO9ngvwE1E/view?usp=share_link 
Orientação: Para visualizar o conteúdo, é necessário baixar o arquivo em formato 
HTML e abri-lo em um navegador. 
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Apêndice C 

Mapa interativo de calor – Sinistros na Avenida Presidente Vargas, Rio Verde (GO) 
2021 a 2024 

Link: https://drive.google.com/file/d/1gZe2lKSfcQwztg9xpbAag9xDb4ulAx-U/view?usp=share_link 
Orientação: Para visualizar o conteúdo, é necessário baixar o arquivo em formato 
HTML e abri-lo em um navegador. 
 

 
 

 
 


